百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

MATLAB的牛顿法求多元函数的极值程序加实例

moboyou 2025-05-03 13:48 42 浏览

今天主要是讲解MATLAB的牛顿法求多元函数的极值程序加实例。


实例1

求f(x,y)= sin(x^2+y^2)*exp(-0.1*(x^2+y^2+x*y+2*x)),在-2<=x<=2,-2<=y<=2上的极值点和极值。

主程序

clc;
clear all;
close all;
syms x y;%定义函数变量 x y
f = sin(x^2+y^2)*exp(-0.1*(x^2+y^2+x*y+2*x));
x0 = [1 1];%初始点 x0(1,1)
[x_best,f_best] = Newton(f,x0,[x y]);
x_best
f_best = vpa(f_best)
x = -2:0.01:2;
y = x;
[X,Y] = meshgrid(x,y);
F = sin(X.^2+Y.^2)*exp(-0.1*(X.^2+Y.^2+X.*Y+2.*X));
figure;
mesh(X,Y,F);
xlabel('x');
ylabel('y');
zlabel('z');

牛顿法函数

function [x_best,f_best] = Newton(f,x0,x,epsilon)
%% 牛顿法求解函数的最小值(极小值)
%% 输入
%   f:目标函数
%   x0:初始点
%   x:自变量向量
%   epsilon:精度
%% 输出
%   x_bes:目标函数取最小值时的自变量值
%   f_best:目标函数的最小值
format long;%改变数据显示格式
if nargin == 3  %默认的精度
    epsilon = 1.0e-6;
end
x0 = transpose(x0);%transpose函数的功能是转置向量或矩阵
x = transpose(x);%transpose函数的功能是转置向量或矩阵
g1f = jacobian(f,x);% jacobian求解向量函数的雅可比矩阵式 
g2f = jacobian(g1f,x);% jacobian求解向量函数的雅可比矩阵式 
% 参数初始化
grad_fxk = 1;
k = 0;
xk = x0;


while norm(grad_fxk) > epsilon  %   计算矩阵 (向量) X的2-范数
    grad_fxk  = subs(g1f,x,xk);%   计算矩阵 (向量) 雅可比矩阵式在xk处的值
    grad2_fxk = subs(g2f,x,xk);
    pk = -inv(grad2_fxk)*transpose(grad_fxk);  % 步长
    pk = double(pk);%转化为双精度浮点类型
    xk_next = xk + pk; %  
    xk = xk_next;
    k = k + 1;
    f_1 = subs(f,x,xk);%计算函数值
    %输出迭代结果
    fprintf('迭代次数:%d  误差:%.20f 极值点:(x,y) = (%f,%f) 极值:f(x,y) = %.20f\n',k,vpa(norm(grad_fxk)),xk(1),xk(2),vpa(f_1));
end
%输出极值点和极值
x_best = xk_next;
f_best = subs(f,x,x_best);
end

运行结果

迭代次数:1  误差:1.02885710610701086587 极值点:(x,y) = (0.669084,0.966374) 极值:f(x,y) = 0.70142228466448164337
迭代次数:2  误差:0.14448082736806977522 极值点:(x,y) = (1.195944,0.595077) 极值:f(x,y) = 0.59942448686119498280
迭代次数:3  误差:0.67873695620313101440 极值点:(x,y) = (1.032695,0.554239) 极值:f(x,y) = 0.65658602325338621952
迭代次数:4  误差:0.03278835230868389766 极值点:(x,y) = (1.077563,0.457762) 极值:f(x,y) = 0.65569150404015985600
迭代次数:5  误差:0.01819636638003245543 极值点:(x,y) = (1.069052,0.464828) 极值:f(x,y) = 0.65572832791085189363
迭代次数:6  误差:0.00027874333536557117 极值点:(x,y) = (1.069330,0.464057) 极值:f(x,y) = 0.65572826847418552720
迭代次数:7  误差:0.00000108627104183494 极值点:(x,y) = (1.069329,0.464058) 极值:f(x,y) = 0.65572826847430654151
迭代次数:8  误差:0.00000000000108544724 极值点:(x,y) = (1.069329,0.464058) 极值:f(x,y) = 0.65572826847430654151


x_best =


   1.069329230413560
   0.464057718471801


 
f_best =
 
0.65572826847430659287489727298377

实例2

求f(x,y)= 4*(x-y)-x^2-y^2,在-2<=x<=2,-2<=y<=2上的极值点和极值。

主程序

clc;
clear all;
close all;
syms x y;%定义函数变量 x y
fx = 4*(x-y)-x^2-y^2;%定义二元变量函数
x0 = [1 1];%初始点 x0(1,1)
[x_best,f_best] = Newton(fx,x0,[x y]);
x_best
f_best = vpa(f_best)
x = -2:0.1:2;
y = x;
[X,Y] = meshgrid(x,y);
F =  4.*(X-Y)-X.^2-Y.^2;
figure;
mesh(X,Y,F);
xlabel('x');
ylabel('y');
zlabel('z');

运行结果

迭代次数:1  误差:6.32455532033675904557 极值点:(x,y) = (2.000000,-2.000000) 极值:f(x,y) = 8.00000000000000000000
迭代次数:2  误差:0.00000000000000000000 极值点:(x,y) = (2.000000,-2.000000) 极值:f(x,y) = 8.00000000000000000000


x_best =


     2
    -2


 
f_best =
 
8.0

实例3

求f(x,y)= (1-x)^2+100*(y-x^2)^2,在-2<=x<=2,-2<=y<=2上的极值点和极值。

主程序

clc;
clear all;
close all;
syms x y;%定义函数变量 x y
f = (1-x)^2+100*(y-x^2)^2;
x0 = [0 0];%初始点 x0(1,1)
[x_best,f_best] = Newton(f,x0,[x y]);
x_best
f_best = vpa(f_best)
x = -2:0.1:2;
y = x;
[X,Y] = meshgrid(x,y);
F = (1-X).^2+100.*(Y-X.^2).^2;
figure;
mesh(X,Y,F);
xlabel('x');
ylabel('y');
zlabel('z');

运行结果

迭代次数:1  误差:2.00000000000000000000 极值点:(x,y) = (1.000000,0.000000) 极值:f(x,y) = 100.00000000000000000000
迭代次数:2  误差:447.21359549995793258859 极值点:(x,y) = (1.000000,1.000000) 极值:f(x,y) = 0.00000000000000000000
迭代次数:3  误差:0.00000000000000000000 极值点:(x,y) = (1.000000,1.000000) 极值:f(x,y) = 0.00000000000000000000


x_best =


     1
     1


 
f_best =
 
0.0

实例4

主程序

clc;
clear all;
close all;
syms x;
f =  9.*x.^2-sin(x)-1;
[x_optimization,y] = Newton_Method(f,2);
x_optimization = double(x_optimization);
y =vpa(y)
x_optimization
x = -10:0.01:10;
ft = 9.*x.^2-sin(x)-1;
figure(1)
plot(x,ft);
hold on;
plot(x_optimization,y,'r*');

Newton_Method函数程序

function [x_optimization,f_optimization] = Newton_Method(f,x0)
format long;
%   f:目标函数
%   x0:初始点
%   epsilon:精度
%   x_optimization:目标函数取最小值时的自变量值
%   f_optimization:目标函数的最小值
if nargin == 2
    epsilon = 1.0e-6;
end
df = diff(f);       %   一阶导数
d2f = diff(df);     %   二阶导数
k = 0;
dfxk = 1;
xk = x0;
while dfxk > epsilon
    dfx = subs(df,symvar(df),xk);
    if diff(d2f) == 0
        d2fx = double(d2f);     % 二阶导数不能为零
    else
        d2fx = subs(d2f,symvar(d2f),xk); 
    end
    xk_next = xk - dfx/d2fx;    
    k = k + 1;                  
    dfxk = abs(dfx);
    xk = xk_next;   %   迭代
end


x_optimization = xk_next;
f_optimization = subs(f,symvar(f),x_optimization);
format short;
end

运行结果

 
y =
 
-1.0277492701423876507411151284973
 


x_optimization =


    0.0555

本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。


作 者 | 郭志龙

编 辑 | 郭志龙
校 对 | 郭志龙

相关推荐

Excel技巧:SHEETSNA函数一键提取所有工作表名称批量生产目录

首先介绍一下此函数:SHEETSNAME函数用于获取工作表的名称,有三个可选参数。语法:=SHEETSNAME([参照区域],[结果方向],[工作表范围])(参照区域,可选。给出参照,只返回参照单元格...

Excel HOUR函数:“小时”提取器_excel+hour函数提取器怎么用

一、函数概述HOUR函数是Excel中用于提取时间值小时部分的日期时间函数,返回0(12:00AM)到23(11:00PM)之间的整数。该函数在时间数据分析、考勤统计、日程安排等场景中应用广泛。语...

Filter+Search信息管理不再难|多条件|模糊查找|Excel函数应用

原创版权所有介绍一个信息管理系统,要求可以实现:多条件、模糊查找,手动输入的内容能去空格。先看效果,如下图动画演示这样的一个效果要怎样实现呢?本文所用函数有Filter和Search。先用filter...

FILTER函数介绍及经典用法12:FILTER+切片器的应用

EXCEL函数技巧:FILTER经典用法12。FILTER+切片器制作筛选按钮。FILTER的函数的经典用法12是用FILTER的函数和切片器制作一个筛选按钮。像左边的原始数据,右边想要制作一...

office办公应用网站推荐_office办公软件大全

以下是针对Office办公应用(Word/Excel/PPT等)的免费学习网站推荐,涵盖官方教程、综合平台及垂直领域资源,适合不同学习需求:一、官方权威资源1.微软Office官方培训...

WPS/Excel职场办公最常用的60个函数大全(含卡片),效率翻倍!

办公最常用的60个函数大全:从入门到精通,效率翻倍!在职场中,WPS/Excel几乎是每个人都离不开的工具,而函数则是其灵魂。掌握常用的函数,不仅能大幅提升工作效率,还能让你在数据处理、报表分析、自动...

收藏|查找神器Xlookup全集|一篇就够|Excel函数|图解教程

原创版权所有全程图解,方便阅读,内容比较多,请先收藏!Xlookup是Vlookup的升级函数,解决了Vlookup的所有缺点,可以完全取代Vlookup,学完本文后你将可以应对所有的查找难题,内容...

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数在电商运营、物流对账等工作中,经常需要统计快递“揽收到签收”的耗时——比如判断某快递公司是否符合“3天内送达”的服务承...

Excel函数公式教程(490个实例详解)

Excel函数公式教程(490个实例详解)管理层的财务人员为什么那么厉害?就是因为他们精通excel技能!财务人员在日常工作中,经常会用到Excel财务函数公式,比如财务报表分析、工资核算、库存管理等...

Excel(WPS表格)Tocol函数应用技巧案例解读,建议收藏备用!

工作中,经常需要从多个单元格区域中提取唯一值,如体育赛事报名信息中提取唯一的参赛者信息等,此时如果复制粘贴然后去重,效率就会很低。如果能合理利用Tocol函数,将会极大地提高工作效率。一、功能及语法结...

Excel中的SCAN函数公式,把计算过程理清,你就会了

Excel新版本里面,除了出现非常好用的xlookup,Filter公式之外,还更新一批自定义函数,可以像写代码一样写公式其中SCAN函数公式,也非常强大,它是一个循环函数,今天来了解这个函数公式的计...

Excel(WPS表格)中多列去重就用Tocol+Unique组合函数,简单高效

在数据的分析和处理中,“去重”一直是绕不开的话题,如果单列去重,可以使用Unique函数完成,如果多列去重,如下图:从数据信息中可以看到,每位参赛者参加了多项运动,如果想知道去重后的参赛者有多少人,该...

Excel(WPS表格)函数Groupby,聚合统计,快速提高效率!

在前期的内容中,我们讲了很多的统计函数,如Sum系列、Average系列、Count系列、Rank系列等等……但如果用一个函数实现类似数据透视表的功能,就必须用Groupby函数,按指定字段进行聚合汇...

Excel新版本,IFS函数公式,太强大了!

我们举一个工作实例,现在需要计算业务员的奖励数据,右边是公司的奖励标准:在新版本的函数公式出来之前,我们需要使用IF函数公式来解决1、IF函数公式IF函数公式由三个参数组成,IF(判断条件,对的时候返...

Excel不用函数公式数据透视表,1秒完成多列项目汇总统计

如何将这里的多组数据进行汇总统计?每组数据当中一列是不同菜品,另一列就是该菜品的销售数量。如何进行汇总统计得到所有的菜品销售数量的求和、技术、平均、最大、最小值等数据?不用函数公式和数据透视表,一秒就...