Oracle监听日志分析
moboyou 2025-04-09 13:40 67 浏览
1.把监听日志和脚本放到一个目录
yuyuz-mac:analyze-listenerlog yuyuz$ pwd
/Users/yuyuz/python/analyze-listenerlog
yuyuz-mac:analyze-listenerlog yuyuz$ ls
listener.log lsnrlog.py
2.执行脚本
yuyuz-mac:analyze-listenerlog yuyuz$ python lsnrlog.py
提取到的成功时间戳数量: 1920
提取到的失败时间戳数量: 15081
提取到的总时间戳数量: 17001
HTML 文件生成成功
yuyuz-mac:analyze-listenerlog yuyuz$ ls
connection_analysis.html listener.log lsnrlog.py
3.查看结果
支持区域放大/查看数据/线图柱图切换
4.代码
import re
from datetime import datetime
from pyecharts import options as opts
from pyecharts.charts import Line, Page
def parse_log(log_text):
"""
解析日志文本,提取包含CONNECT_DATA字段行的时间戳、SERVICE、HOST和IP,并区分成功和失败连接
:param log_text: 日志文本
:return: 成功时间戳列表、失败时间戳列表、总时间戳列表、SERVICE信息列表、HOST信息列表、IP信息列表
"""
success_timestamps = []
failure_timestamps = []
total_timestamps = []
services = []
hosts = []
ips = []
pattern = r'(\d{2}-[A-Z]{3}-\d{4} \d{2}:\d{2}:\d{2})|(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2})'
service_pattern = r'SERVICE_NAME=(\w+)'
host_pattern = r'HOST=(\w+)'
ip_pattern = r'HOST=(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'
for line in log_text.split('\n'):
if 'CONNECT_DATA' in line:
match = re.search(pattern, line)
if match:
timestamp_str = match.group(0)
try:
if '-' in timestamp_str[0:3]:
timestamp = datetime.strptime(timestamp_str, '%d-%b-%Y %H:%M:%S')
else:
timestamp = datetime.strptime(timestamp_str, '%Y-%m-%dT%H:%M:%S')
total_timestamps.append(timestamp)
if line.strip().endswith('0'):
success_timestamps.append(timestamp)
else:
failure_timestamps.append(timestamp)
service_match = re.search(service_pattern, line)
host_match = re.search(host_pattern, line)
ip_match = re.search(ip_pattern, line)
service = service_match.group(1) if service_match else None
host = host_match.group(1) if host_match else None
ip = ip_match.group(1) if ip_match else None
services.append((timestamp, service))
hosts.append((timestamp, host))
ips.append((timestamp, ip))
except ValueError:
print(f"无法解析时间戳: {timestamp_str}")
print(f"提取到的成功时间戳数量: {len(success_timestamps)}")
print(f"提取到的失败时间戳数量: {len(failure_timestamps)}")
print(f"提取到的总时间戳数量: {len(total_timestamps)}")
return success_timestamps, failure_timestamps, total_timestamps, services, hosts, ips
def count_connections(timestamps, interval):
"""
统计不同时间间隔的连接数
:param timestamps: 时间戳列表
:param interval: 时间间隔,如 'H' 表示小时,'T' 表示分钟,'S' 表示秒
:return: 时间间隔和对应的连接数
"""
counts = {}
for timestamp in timestamps:
if interval == 'H':
key = timestamp.replace(minute=0, second=0, microsecond=0).strftime('%Y-%m-%d %H:00:00')
elif interval == 'T':
key = timestamp.replace(second=0, microsecond=0).strftime('%Y-%m-%d %H:%M:00')
elif interval == 'S':
key = timestamp.replace(microsecond=0).strftime('%Y-%m-%d %H:%M:%S')
if key in counts:
counts[key] += 1
else:
counts[key] = 1
return sorted(counts.items())
def count_by_attribute(data, interval, attribute):
"""
按指定属性统计不同时间间隔的连接数
:param data: 包含时间戳和属性的元组列表
:param interval: 时间间隔,如 'H' 表示小时,'T' 表示分钟,'S' 表示秒
:param attribute: 属性名称
:return: 以属性为键,时间间隔和对应连接数为值的字典
"""
counts = {}
for timestamp, attr in data:
if attr is None:
continue
if interval == 'H':
key = timestamp.replace(minute=0, second=0, microsecond=0).strftime('%Y-%m-%d %H:00:00')
elif interval == 'T':
key = timestamp.replace(second=0, microsecond=0).strftime('%Y-%m-%d %H:%M:00')
elif interval == 'S':
key = timestamp.replace(microsecond=0).strftime('%Y-%m-%d %H:%M:%S')
if attr not in counts:
counts[attr] = {}
if key in counts[attr]:
counts[attr][key] += 1
else:
counts[attr][key] = 1
for attr in counts:
counts[attr] = sorted(counts[attr].items())
return counts
def create_line_chart(success_data, failure_data, total_data, interval):
"""
创建线图
:param success_data: 成功连接的时间间隔和对应的连接数
:param failure_data: 失败连接的时间间隔和对应的连接数
:param total_data: 总连接的时间间隔和对应的连接数
:param interval: 时间间隔,如 '小时','分钟','秒'
:return: 线图对象
"""
x_data = sorted(set([item[0] for item in success_data + failure_data + total_data]))
success_y_data = [next((item[1] for item in success_data if item[0] == x), 0) for x in x_data]
failure_y_data = [next((item[1] for item in failure_data if item[0] == x), 0) for x in x_data]
total_y_data = [next((item[1] for item in total_data if item[0] == x), 0) for x in x_data]
line = (
Line(init_opts=opts.InitOpts(bg_color="#f5f5f5", width="100%"))
.add_xaxis(x_data)
.add_yaxis(
series_name=f"成功连接总数/{interval}",
y_axis=success_y_data,
label_opts=opts.LabelOpts(is_show=False),
linestyle_opts=opts.LineStyleOpts(width=2, color="#228B22"),
symbol="circle",
symbol_size=6,
itemstyle_opts=opts.ItemStyleOpts(color="#228B22")
)
.add_yaxis(
series_name=f"失败连接总数/{interval}",
y_axis=failure_y_data,
label_opts=opts.LabelOpts(is_show=False),
linestyle_opts=opts.LineStyleOpts(width=2, color="#FF0000"),
symbol="circle",
symbol_size=6,
itemstyle_opts=opts.ItemStyleOpts(color="#FF0000")
)
.add_yaxis(
series_name=f"总连接数/{interval}",
y_axis=total_y_data,
label_opts=opts.LabelOpts(is_show=False),
linestyle_opts=opts.LineStyleOpts(width=2, color="#FF6347"),
symbol="circle",
symbol_size=6,
itemstyle_opts=opts.ItemStyleOpts(color="#FF6347")
)
.set_global_opts(
title_opts=opts.TitleOpts(
title=f"连接情况统计/{interval}",
title_textstyle_opts=opts.TextStyleOpts(font_size=20, color="#333")
),
toolbox_opts=opts.ToolboxOpts(is_show=True),
xaxis_opts=opts.AxisOpts(
name=interval,
axislabel_opts=opts.LabelOpts(rotate=45, font_size=12, color="#666"),
name_textstyle_opts=opts.TextStyleOpts(font_size=14, color="#333")
),
yaxis_opts=opts.AxisOpts(
name="连接数",
axislabel_opts=opts.LabelOpts(font_size=12, color="#666"),
name_textstyle_opts=opts.TextStyleOpts(font_size=14, color="#333")
),
tooltip_opts=opts.TooltipOpts(trigger="axis"),
legend_opts=opts.LegendOpts(
type_="scroll",
orient="vertical",
pos_left="right",
pos_top="middle",
textstyle_opts=opts.TextStyleOpts(font_size=8, color="#333")
)
)
)
return line
def create_attribute_line_chart(counts, interval, attribute):
"""
创建按属性统计的线图
:param counts: 以属性为键,时间间隔和对应连接数为值的字典
:param interval: 时间间隔,如 '小时','分钟','秒'
:param attribute: 属性名称
:return: 线图对象
"""
all_x_data = set()
for data in counts.values():
for x, _ in data:
all_x_data.add(x)
x_data = sorted(all_x_data)
line = Line(init_opts=opts.InitOpts(bg_color="#f5f5f5", width="100%"))
line.add_xaxis(x_data)
for attr, data in counts.items():
y_data = [next((item[1] for item in data if item[0] == x), 0) for x in x_data]
line.add_yaxis(
series_name=f"{attr}/{interval}",
y_axis=y_data,
label_opts=opts.LabelOpts(is_show=False),
linestyle_opts=opts.LineStyleOpts(width=2),
symbol="circle",
symbol_size=6
)
line.set_global_opts(
title_opts=opts.TitleOpts(
title=f"{attribute} 连接情况统计/{interval}",
title_textstyle_opts=opts.TextStyleOpts(font_size=20, color="#333")
),
toolbox_opts=opts.ToolboxOpts(is_show=True),
xaxis_opts=opts.AxisOpts(
name=interval,
axislabel_opts=opts.LabelOpts(rotate=45, font_size=12, color="#666"),
name_textstyle_opts=opts.TextStyleOpts(font_size=14, color="#333")
),
yaxis_opts=opts.AxisOpts(
name="连接数",
axislabel_opts=opts.LabelOpts(font_size=12, color="#666"),
name_textstyle_opts=opts.TextStyleOpts(font_size=14, color="#333")
),
tooltip_opts=opts.TooltipOpts(trigger="axis"),
legend_opts=opts.LegendOpts(
type_="scroll",
orient="vertical",
pos_left="right",
pos_top="middle",
textstyle_opts=opts.TextStyleOpts(font_size=8, color="#333")
)
)
return line
def main():
"""
主函数,从文件读取日志并生成包含多个线图的网页
"""
try:
with open('listener.log', 'r', encoding='utf-8') as file:
log_text = file.read()
success_timestamps, failure_timestamps, total_timestamps, services, hosts, ips = parse_log(log_text)
# 统计每小时、每分钟、每秒的成功、失败和总连接数
intervals = ['H', 'T', 'S']
interval_names = ['小时', '分钟', '秒']
page = Page()
for interval, interval_name in zip(intervals, interval_names):
hourly_success_data = count_connections(success_timestamps, interval)
hourly_failure_data = count_connections(failure_timestamps, interval)
hourly_total_data = count_connections(total_timestamps, interval)
hourly_chart = create_line_chart(hourly_success_data, hourly_failure_data, hourly_total_data, interval_name)
page.add(hourly_chart)
# 按SERVICE、HOST、IP统计并绘制线图
attributes = [('SERVICE', services), ('HOST', hosts), ('IP', ips)]
for attribute_name, attribute_data in attributes:
for interval, interval_name in zip(intervals, interval_names):
counts = count_by_attribute(attribute_data, interval, attribute_name)
chart = create_attribute_line_chart(counts, interval_name, attribute_name)
page.add(chart)
page.render("connection_analysis.html")
# 添加版权信息到 HTML 文件
copyright_info = '声明:仅用作兴趣爱好和测试使用,请勿商用,不承担任何商业责任。--张宇--'
with open('connection_analysis.html', 'a', encoding='utf-8') as f:
f.write(copyright_info)
print("HTML 文件生成成功")
except FileNotFoundError:
print("未找到 listener.log 文件,请确保文件存在。")
except Exception as e:
print(f"发生错误: {e}")
if __name__ == "__main__":
main()
- 上一篇:数据库中常用的数值函数
- 下一篇:DTrace 和 strace 概述
相关推荐
- 高效有趣学Excel:从入门到精通的全面教程分享
-
在当今这个数据驱动的时代,掌握Excel不仅是提升工作效率的利器,更是职场竞争中的一项重要技能。今天,我非常高兴地与大家分享一套全面的Excel学习教程——《高效有趣学Excel:轻松入门到精通》,这...
- Excel新函数重磅来袭!告别复杂公式,效率提升200%!
-
“透视表终于不用点来点去了?”昨晚刷到这条留言,顺手把新表扔进365,一行=GROUPBY(部门,产品,销售额,SUM)回车,三秒出汇总,刷新按钮直接失业。那一刻,办公室空调声都显得多余。有人还在录宏...
- Excel 效率神器:LET 函数入门教程,让复杂公式变简单
-
您是否曾经编写过又长又复杂的Excel公式,然后没过几天自己都看不懂了?或者,同一个计算在公式里重复写了无数次,不仅容易出错,修改起来更是噩梦?Excel推出的LET函数就是来解决这些痛点...
- Excel多对多查询函数新手教程:从案例到实操
-
一、为啥要学多对多查询?举个例子你就懂!假设你是公司HR,手里有张员工技能表(如下),现在需要快速找出:"张三"会哪些技能?"Excel"技能有哪些人掌握?员工姓名...
- 14、VBA代码+excel内置函数,实现高效数据处理(零基础入门)
-
1、学习VBA的主要目的是数据处理,VBA在数据处理上展现出强大的计算实力。它不仅完美继承EXCEl内置函数的功能,还能通过编程语法实现更灵活的应用。无论是基础的加减乘除,还是复杂的统计分析、逻辑判断...
- word和excel零基础学习免费视频教程,赶紧收藏,作者将转付费课
-
亲爱的朋友们:大家好!本人是全国计算机等级考试二级MSoffice高级应用课程的在校授课老师。本人近段时间打算将wore/excel免费分享给所有有需要的朋友。知识本身无深浅,本人知识也有限,如果讲...
- excel函数从入门到精通,5组13个函数,易学易懂易用
-
对于职场中经常使用Excel的小伙伴们,最希望掌握一些函数公式,毕竟给数据处理带来很多方便,可以提高我们的工作效率。今天分享几组函数公式,适合于初学者,也是职场中经常用到的,下次碰到可以直接套用了。0...
- Excel效率神器:LET函数入门教程,让复杂公式变简单
-
写公式写到想砸电脑?教你用LET把Excel公式从“迷宫”变成“小剧本”,几步看懂又好改很多人都经历过这样的窘境:花了半小时写出一条看似厉害的Excel公式,几天后再看自己都懵了,或者同样...
- 完全免费的Excel教程大全,适合日常excel办公和技能提升
-
说明微软官方的excel文档,由于网站在国外,有时打开慢,而且应用层面介绍不够详细;这里介绍一个集齐了excel各种使用方法和说明的网站;网站名称:懒人Excel网站介绍可以看到有基础教程、快捷键、函...
- Excel 新函数 LAMBDA 入门级教程_excel365新增函数
-
LAMBDA函数的出现是Excel历史上的一次革命性飞跃。它允许用户自定义函数,而无需学习VBA等编程语言。这意味着你可以将复杂的、重复的计算逻辑封装成一个简单的、可复用的自定义函数,极大地...
- Excel新函数LAMBDA入门级教程_excel新建函数
-
把复杂公式“变成函数”后,我在Excel上的重复工作少了一半——你也能做到我一直有一个习惯:遇到每天要重复写的复杂公式,就想把它封装起来,像调用内置函数那样去用。说实话,过去没有LAMBDA,这个想法...
- Excel DROP 函数全方位教程:从基础入门到高级动态应用
-
上一篇我们学习了ExcelTAKE函数,今天我们来学习一下和TAKE函数相对应的DROP函数,它是Microsoft365和Excel2021中引入的一个动态数组函数。它的核心功能是从一...
- 学习Excel公式函数还有官方提供的教程,还是免费的!赶紧试试
-
首先声明,这不是广告,纯干货分享!除了学习Excel的基本操作之外,很多人都是冲着公式和函数才去找教程买教材的,这个结论应该不会有什么毛病。因为,Excel的公式函数真的很强大!现在的Excel教程可...
- 什么是保险员常说的“IRR”?让我们一次说明白!
-
买保险的时候,你是不是常听到销售抛出一些术语,比如“IRR很高哦,收益不错!”?听着挺专业,但“IRR”到底啥意思?想问又不好意思问,别急,它其实是个很简单的概念,咱们今天一次把它说明白。1,IRR...
- 理财型保险如何选择缴费期?_理财型保险计算方式
-
选择理财型保险(通常指年金险、增额终身寿险等)的缴费期,并非简单地看哪个年限短或长,而是需要结合自己的财务状况、理财目标和产品特性来综合决定。下面我将为大家详细解析不同缴费期的特点、适用人群和选择策略...
- 一周热门
- 最近发表
-
- 高效有趣学Excel:从入门到精通的全面教程分享
- Excel新函数重磅来袭!告别复杂公式,效率提升200%!
- Excel 效率神器:LET 函数入门教程,让复杂公式变简单
- Excel多对多查询函数新手教程:从案例到实操
- 14、VBA代码+excel内置函数,实现高效数据处理(零基础入门)
- word和excel零基础学习免费视频教程,赶紧收藏,作者将转付费课
- excel函数从入门到精通,5组13个函数,易学易懂易用
- Excel效率神器:LET函数入门教程,让复杂公式变简单
- 完全免费的Excel教程大全,适合日常excel办公和技能提升
- Excel 新函数 LAMBDA 入门级教程_excel365新增函数
- 标签列表
-
- 外键约束 oracle (36)
- oracle的row number (32)
- 唯一索引 oracle (34)
- oracle in 表变量 (28)
- oracle导出dmp导出 (28)
- 多线程的创建方式 (29)
- 多线程 python (30)
- java多线程并发处理 (32)
- 宏程序代码一览表 (35)
- c++需要学多久 (25)
- css class选择器用法 (25)
- css样式引入 (30)
- css教程文字移动 (33)
- php简单源码 (36)
- php个人中心源码 (25)
- php小说爬取源码 (23)
- 云电脑app源码 (22)
- html画折线图 (24)
- docker好玩的应用 (28)
- linux有没有pe工具 (34)
- 可以上传视频的网站源码 (25)
- 随机函数如何生成小数点数字 (31)
- 随机函数excel公式总和不变30个数据随机 (33)
- 所有excel函数公式大全讲解 (22)
- 有动图演示excel函数公式大全讲解 (32)