如何解决MATLAB的solve函数求方程时出现未知数z和root
moboyou 2025-04-22 00:45 15 浏览
在使用MATLAB的solve函数求解非线性方程时,有可能会在求解的结果中出现z(或者z1)和root,无法得出数值结果。今天主要是以实际的例子,用三种方法解决这个问题。
1.实例1
程序
clc;
clear all;
syms x y z u v w;
eqn=[-5*x+20*y+y*z==0,-x-5*y+2*x*z-v==0,-z+2*u-2*x*y==0,-z-5*u+w==0,-y+v-w==0,v-u==0];
var=[x,y,z,u,v,w];
[x,y,z,u,v,w]=solve(eqn,var)
运行结果
x =
0
(1253323104*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^2)/10108417235 - (143782272*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^3)/10108417235 - (64966543683*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1))/20216834470 - 6753430183/8086733788
(1253323104*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^2)/10108417235 - (143782272*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^3)/10108417235 - (64966543683*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2))/20216834470 - 6753430183/8086733788
(1253323104*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^2)/10108417235 - (143782272*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^3)/10108417235 - (64966543683*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3))/20216834470 - 6753430183/8086733788
(1253323104*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^2)/10108417235 - (143782272*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^3)/10108417235 - (64966543683*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4))/20216834470 - 6753430183/8086733788
y =
0
- (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^2)/10108417235 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^3)/10108417235 - (15779928907*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1))/20216834470 - 1718896477/8086733788
- (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^2)/10108417235 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^3)/10108417235 - (15779928907*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2))/20216834470 - 1718896477/8086733788
- (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^2)/10108417235 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^3)/10108417235 - (15779928907*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3))/20216834470 - 1718896477/8086733788
- (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^2)/10108417235 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^3)/10108417235 - (15779928907*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4))/20216834470 - 1718896477/8086733788
z =
0
(132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^2)/2021683447 + (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^3)/2021683447 - (393538669*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1))/4043366894 + 8594482385/8086733788
(132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^2)/2021683447 + (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^3)/2021683447 - (393538669*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2))/4043366894 + 8594482385/8086733788
(132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^2)/2021683447 + (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^3)/2021683447 - (393538669*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3))/4043366894 + 8594482385/8086733788
(132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^2)/2021683447 + (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^3)/2021683447 - (393538669*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4))/4043366894 + 8594482385/8086733788
u =
0
(4436905563*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1))/20216834470 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^3)/10108417235 - (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^2)/10108417235 - 1718896477/8086733788
(4436905563*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2))/20216834470 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^3)/10108417235 - (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^2)/10108417235 - 1718896477/8086733788
(4436905563*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3))/20216834470 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^3)/10108417235 - (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^2)/10108417235 - 1718896477/8086733788
(4436905563*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4))/20216834470 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^3)/10108417235 - (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^2)/10108417235 - 1718896477/8086733788
v =
0
(4436905563*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1))/20216834470 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^3)/10108417235 - (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)^2)/10108417235 - 1718896477/8086733788
(4436905563*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2))/20216834470 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^3)/10108417235 - (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)^2)/10108417235 - 1718896477/8086733788
(4436905563*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3))/20216834470 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^3)/10108417235 - (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)^2)/10108417235 - 1718896477/8086733788
(4436905563*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4))/20216834470 - (6267264*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^3)/10108417235 - (132488256*root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)^2)/10108417235 - 1718896477/8086733788
w =
0
root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 1)
root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 2)
root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 3)
root(z1^4 - (159*z1^3)/19 + (3349633*z1^2)/14592 + (1397285*z1)/14592 + 4898525/58368, z1, 4)
在官方的帮助文档中有找到出现z和root的原因
Numerically Approximating Symbolic Solutions That Contain root
When solving polynomials, solve might return solutions containing root.
To numerically approximate these solutions, use vpa. Consider the following
equation and solution.
在求解多项式或者高阶非线性方程时,求解可能返回含有根的解。要用数字近似这些解,请使用vpa()。
方法1:我们可以使用double函数对结果进行数字近似化。
double 是 MATLAB 中的默认数值数据类型(类),它可为大多数计算任务
提供足够的精度。数值变量自动存储为 64 位(8 字节)双精度浮点值。
Y = double(X)
程序
clc;
clear all;
syms x y z u v w;
eqn=[-5*x+20*y+y*z==0,-x-5*y+2*x*z-v==0,-z+2*u-2*x*y==0,-z-5*u+w==0,-y+v-w==0,v-u==0];
var=[x,y,z,u,v,w];
[x,y,z,u,v,w]=solve(eqn,var);
x = double(x)
y = double(y)
z = double(z)
u = double(u)
v = double(v)
w = double(w)
运行结果
x =
0.0000 + 0.0000i
-0.1889 + 1.8323i
-0.1889 - 1.8323i
-0.1861 - 1.3171i
-0.1861 + 1.3171i
y =
0.0000 + 0.0000i
-0.0434 + 0.4350i
-0.0434 - 0.4350i
0.5960 +11.6818i
0.5960 -11.6818i
z =
0.0000 + 0.0000i
1.0663 + 0.0706i
1.0663 - 0.0706i
-20.5663 + 0.0507i
-20.5663 - 0.0507i
u =
0.0000 + 0.0000i
-0.2557 - 0.1264i
-0.2557 + 0.1264i
4.9926 - 2.9331i
4.9926 + 2.9331i
v =
0.0000 + 0.0000i
-0.2557 - 0.1264i
-0.2557 + 0.1264i
4.9926 - 2.9331i
4.9926 + 2.9331i
w =
0.0000 + 0.0000i
-0.2124 - 0.5614i
-0.2124 + 0.5614i
4.3966 -14.6150i
4.3966 +14.6150i
2.实例2
程序
clc;
clear all;
syms x y
[x,y]=solve((x-2)^2+(y+2*x-3)^2==5,2*(x-3)^2+(y/ 3)^2==4 )
运行结果
x =
(6449*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 1)^2)/7380 + (457*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 1)^3)/3690 - (6*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 1))/205 - 927/410
(6449*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 2)^2)/7380 + (457*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 2)^3)/3690 - (6*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 2))/205 - 927/410
(6449*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 3)^2)/7380 + (457*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 3)^3)/3690 - (6*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 3))/205 - 927/410
(6449*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 4)^2)/7380 + (457*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 4)^3)/3690 - (6*root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 4))/205 - 927/410
y =
root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 1)
root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 2)
root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 3)
root(z^4 + (4824*z^3)/457 + (11844*z^2)/457 - (14256*z)/457 - 54108/457, z, 4)
方法2 使用vpa函数求近似数值解。
程序
clc;
clear all;
syms x y
[x,y]=solve((x-2)^2+(y+2*x-3)^2==5,2*(x-3)^2+(y/ 3)^2==4 );
x = vpa(x)
y = vpa(y)
x = double(x)
y = double(y)
运行结果
x =
1.6580664770347998069049390497594
1.7362259004399598338121197151769
4.0287335406907803557776183983678
3.4828821781145475308576204296936
y =
1.8936365963298548025994430021814
-2.6929074352940121705044040780427
-4.1171266000258712039597783906018
-5.639401248099686964240293356294
x =
1.6581
1.7362
4.0287
3.4829
y =
1.8936
-2.6929
-4.1171
-5.6394
实例3
程序
clc;
clear all;
syms x a
eqn = x^3 + x^2 + a == 0;
solve(eqn, x)
运行结果
ans =
root(z^3 + z^2 + a, z, 1)
root(z^3 + z^2 + a, z, 2)
root(z^3 + z^2 + a, z, 3)
方法3 修改参数设置。
程序
clc;
clear all;
syms x a
eqn = x^3 + x^2 + a == 0;
solve(eqn, x)
%通过使用“最大度数”调用求解器,尝试获得此类方程的显式解。
% 该选项指定求解程序尝试返回显式解的多项式的最大次数。默认值为2。
% 增加这个值,可以得到高阶多项式的显式解。
% 通过将“MaxDegree”的值增加到3来求解相同的方程以获得显式解。
S = solve(eqn, x, 'MaxDegree', 3)
运行结果
S =
1/(9*(((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3)) + (((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3) - 1/3
- (3^(1/2)*(1/(9*(((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3)) - (((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3))*1i)/2 - 1/(18*(((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3)) - (((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3)/2 - 1/3
(3^(1/2)*(1/(9*(((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3)) - (((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3))*1i)/2 - 1/(18*(((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3)) - (((a/2 + 1/27)^2 - 1/729)^(1/2) - a/2 - 1/27)^(1/3)/2 - 1/3
实例4 solve的使用实例
程序
clc;
clear all;
syms a b c x
eqn = a*x^2 + b*x + c == 0
S = solve(eqn)
Sa = solve(eqn,a)
syms x
eqn = x^5 == 3125;
S = solve(eqn,x)
S = solve(eqn,x,'Real',true)
syms x
eqn = sin(x) == x^2 - 1;
S = solve(eqn,x)
fplot([lhs(eqn) rhs(eqn)], [-2 2])
%通过直接调用数值求解器vpasolve并指定间隔来查找另一个解。
V = vpasolve(eqn,x,[0 2])
syms u v
eqns = [2*u + v == 0, u - v == 1];
S = solve(eqns,[u v])
S.u
S.v
expr1 = u^2;
e1 = subs(expr1,S)
expr2 = 3*v + u;
e2 = subs(expr2,S)
eqns = [3*u+2, 3*u+1];
S = solve(eqns,u)
运行结果
eqn =
a*x^2 + b*x + c == 0
S =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)
Sa =
-(c + b*x)/x^2
S =
5
- (2^(1/2)*(5 - 5^(1/2))^(1/2)*5i)/4 - (5*5^(1/2))/4 - 5/4
(2^(1/2)*(5 - 5^(1/2))^(1/2)*5i)/4 - (5*5^(1/2))/4 - 5/4
(5*5^(1/2))/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*5i)/4 - 5/4
(5*5^(1/2))/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*5i)/4 - 5/4
S =
5
警告: Unable to solve symbolically. Returning a numeric solution using vpasolve.
> In sym/solve (line 304)
In guo_20230421_16 (line 15)
S =
-0.63673265080528201088799090383828
V =
1.4096240040025962492355939705895
S =
包含以下字段的 struct:
u: [1×1 sym]
v: [1×1 sym]
ans =
1/3
ans =
-2/3
e1 =
1/9
e2 =
-5/3
S =
Empty sym: 0-by-1
>>
实例5 solve函数可以求解不等式并返回满足不等式的解
程序
clc;
clear all;
%solve函数可以求解不等式并返回满足不等式的解。解下列不等式。
syms x y
eqn1 = x > 0
eqn2 = y > 0
eqn3 = x^2 + y^2 + x*y < 1
eqns = [eqn1 eqn2 eqn3]
%将"ReturnConditions”设置为true以返回解决方案中的任何参数和解决方案的条件。
S = solve(eqns,[x y],'ReturnConditions',true);
S.x
S.y
S.parameters
S.conditions
condWithValues = subs(S.conditions, S.parameters, [7/2,1/2]);
%isAlways返回逻辑1 (true ),表示这些值满足条件。将这些参数值代入S.x和S.y,找到x和y的解。
isAlways(condWithValues)
xSol = subs(S.x, S.parameters, [7/2,1/2])
ySol = subs(S.y, S.parameters, [7/2,1/2])
运行结果
3.参考内容
[1https://ww2.mathworks.cn/help/symbolic/sym.solve.html;jsessionid=476bd2cb441b759c3d4ebd88747b
[2] CSDN博主有些时候甚至幼稚的文章《Matlab 使用solve求解方程,出现未知数z和root》,文章链接为:
https://blog.csdn.net/jyfan0806/article/details/86613224
本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。
作 者 | 郭志龙
编 辑 | 郭志龙
校 对 | 郭志龙
相关推荐
- Excel批量生成随机人名_excel批量生成随机数
-
之前的文章讲过怎么用在Excel生成随机银行名字。今天继续给大家分享下怎么在Excel生成随机人名。随机数据工具包书接上回,本文对之前的随机数据生成工具包进行封装调用,生成的结果直接写入到Excel表...
- 一学就会:Excel MOD函数,让数字周期循环变得easy
-
今日推荐:MOD函数。目的:根据当前日期在年内的周数对5个小组取余,再根据余数的值获取对应的值班小组。MOD函数也可以作为获取随机数的一种,只不过这种随机数是有一定规律的。【函数介绍】MOD——返回两...
- 1条公式,自动随机分配座位,你会么?
-
随机座位困局、老办法效率低、新公式能否破局?.上周学校开会说要给教室换排座位,教务处老师愁得头发都快白了。以前都是靠老师自己写名单再划拉划分组,现在新教室三列座位,学生又多,折腾了三天都没摆顺当。听说...
- excel快速制作姓名随机分配表_姓名随机分组
-
快速制作随机分配表。当需要把这一列的姓名进行随机分组应该怎么操作?是不是还在一行一行的去复制粘贴,这样效率是非常慢的。怎么快速的制作一个随机的分组?·首先在第一组输入等于第一个姓名的A2单元格,双击填...
- Excel里实现随机分组案例:导入名单随机分组
-
大家好呀,今天来给大家分享如何快速在Excel里实现随机分组。如下图所示,有15个人,现在要随机分成3组,每组5个人。只要简单两步,就能完成分组。第一步:为每个人设置一个随机数并编序号C列输入公式=R...
- 办公必备的15个Excel技巧,绝对的硬核干货,收藏备用
-
Excel的灵魂在于数据的分析与统计,而分析与统计就离不开函数或公式,今天要给大家分享的15个函数公式,是工作中常用的,可以直接套用。一、从身份证号码中提取出生年月。函数1:Tex...
- Excel如何将某单元格区域数据随机排序
-
如下图是某公司人员名单,现在想要对这些员工进行随机分组。即对单元格区域内数据进行随机排序。选中B2:E10单元格区域点击下图选项(Excel工具箱,百度它即可了解详细的下载安装方法,本文这里就不做具体...
- 一键生成随机口算题,Excel工具妙用
-
小学生每天都要做口算,今天我给大家分享一下如何用excel来自制小学生的口算题。看我这里已经做好了,它的公式是这样,然后往下去拉,想要多少要多少,而且每一道题都是随机的。而且这一个表做好了之后,只要让...
- Excel秒变抽签神器!1分钟搞定随机点名/抽奖
-
还在为年会抽奖、课堂点名、分组任务抓狂?别求人写代码啦!Excel自带隐藏大招1分钟设置,永久使用,按个键就能开抽超简单3步设置(有手就会版)1随机号生成在姓名表旁新建「随机号」列输入=RAND...
- 基础函数20例,案例解读,再不掌握就真的Out了
-
Excel中的函数是Excel的一个重要工具,如果你不及时掌握,对于Excel的应用、工作效率等会受到很大的影响,今天,小编给大家分享20个Excel的基础函数,对大家肯定很有帮助。练习文件在文末领取...
- 怎么利用Excel实现随机取样_excel随机取数据
-
今天跟大家分享一下Excel如何随机抽样1.打开Excel软件2.选中要抽取数据的单元格区域3.点击下图选项(Excel工具箱,百度即可了解详细下载安装信息,本文这里就不做详细解说。)4.点击【统计与...
- 1分钟学会Excel总表更新,分表实时同步,再也不用熬夜了!
-
你是不是还在用筛选→复制→粘贴的老方法拆分Excel数据?每次按类别整理报表都要折腾半小时?别傻了!今天教你用FILTER函数一键搞定,数据更新还能自动同步!第一步:准备工作表新建3个工作表,分...
- excel计算几个数范围,excel怎么计算一个范围的个数
-
excel怎么计算某些范围的数的个数,需要计算0-5,5-10,10-15,……1000的...比如这些数字在A列,从B1至B10求10个范围的数量。在B1输入:=countif(a:a,=10)在B...
- 让Excel随机排序_excel如何设置随机排序
-
随机排序如下图,希望对A列的应聘人员随机安排面试顺序。先将标题复制到右侧的空白单元格内,然后在第一个标题下方输入公式:=SORTBY(A2:B11,RANDARRAY(10),1)RANDARRAY的...
- 对人员进行随机分组,分步骤详细解释,看了就学会了
-
大家好,我是套路EXCEL!如上图,需要将12个人随机分成3组,每组4人。函数公式如下:=ROUNDUP(CHOOSECOLS(SORT(HSTACK(ROW(1:12),RANDARRAY(12...
- 一周热门
- 最近发表
- 标签列表
-
- 外键约束 oracle (36)
- oracle的row number (32)
- 唯一索引 oracle (34)
- oracle in 表变量 (28)
- oracle导出dmp导出 (28)
- 多线程的创建方式 (29)
- 多线程 python (30)
- java多线程并发处理 (32)
- 宏程序代码一览表 (35)
- c++需要学多久 (25)
- css class选择器用法 (25)
- css样式引入 (30)
- css教程文字移动 (33)
- php简单源码 (36)
- php个人中心源码 (25)
- php小说爬取源码 (23)
- 云电脑app源码 (22)
- html画折线图 (24)
- docker好玩的应用 (28)
- linux有没有pe工具 (34)
- mysql数据库源码 (21)
- php开源万能表单系统源码 (21)
- 可以上传视频的网站源码 (25)
- 随机函数如何生成小数点数字 (31)
- 随机函数excel公式总和不变30个数据随机 (33)