百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

基于MATLAB的人工神经网络ANN回归代码

moboyou 2025-04-23 14:10 43 浏览

在之前的文章基于MATLAB的随机森林RF回归与变量重要性影响程度排序代码中,我们对基于MATLAB的随机森林(RF)回归与变量影响程度(重要性)排序的代码加以详细讲解与实践。本次我们继续基于MATLAB,对另一种常用的机器学习方法——神经网络方法加以代码实战。

首先需要注明的是,在MATLAB中,我们可以直接基于“APP”中的“Neural Net Fitting”工具箱实现在无需代码的情况下,对神经网络算法加以运行:

基于工具箱的神经网络方法虽然方便,但是一些参数不能调整;同时也不利于我们对算法、代码的理解。因此,本文不利用“Neural Net Fitting”工具箱,而是直接通过代码将神经网络方法加以运行——但是,本文的代码其实也是通过上述工具箱运行后生成的;而这种生成神经网络代码的方法也是MATLAB官方推荐的方式。

另外,需要注意的是,本文直接进行神经网络算法的执行,省略了前期数据处理、训练集与测试集划分、精度衡量指标选取等。因此建议大家先将本文开头提及的那篇文章阅读后,再阅读本文。

本文分为两部分,首先是将代码分段、详细讲解,方便大家理解;随后是完整代码,方便大家自行尝试。

1 分解代码

1.1 循环准备

由于机器学习往往需要多次执行,我们就在此先定义循环。

%% ANN Cycle Preparation

ANNRMSE=9999;
ANNRunNum=0;
ANNRMSEMatrix=[];
ANNrAllMatrix=[];
while ANNRMSE>400

其中,ANNRMSE是初始的RMSE;ANNRunNum是神经网络算法当前运行的次数;ANNRMSEMatrix用来存储每一次神经网络运行后所得到的RMSE结果;ANNrAllMatrix用来存储每一次神经网络运行后所得到的皮尔逊相关系数结果;最后一句表示当所得到的模型RMSE>400时,则停止循环。

1.2 神经网络构建

接下来,我们对神经网络的整体结构加以定义。

%% ANN

x=TrainVARI';
t=TrainYield';
trainFcn = 'trainlm';
hiddenLayerSize = [10 10 10];
ANNnet = fitnet(hiddenLayerSize,trainFcn);

其中,TrainVARITrainYield分别是我这里训练数据的自变量(特征)与因变量(标签);trainFcn为神经网络所选用的训练函数方法名称,其名称与对应的方法对照如下表:

hiddenLayerSize为神经网络所用隐层与各层神经元个数,[10 10 10]代表共有三层隐层,各层神经元个数分别为10,10,10。

1.3 数据处理

接下来,对输入神经网络模型的数据加以处理。

ANNnet.input.processFcns = {'removeconstantrows','mapminmax'};
ANNnet.output.processFcns = {'removeconstantrows','mapminmax'};
ANNnet.divideFcn = 'dividerand';
ANNnet.divideMode = 'sample';
ANNnet.divideParam.trainRatio = 0.6;
ANNnet.divideParam.valRatio = 0.4;
ANNnet.divideParam.testRatio = 0.0;

其中,ANNnet.input.processFcnsANNnet.output.processFcns分别代表输入模型数据的处理方法,'removeconstantrows'表示删除在各样本中数值始终一致的特征列,'mapminmax'表示将数据归一化处理;divideFcn表示划分数据训练集、验证集与测试集的方法,'dividerand'表示依据所给定的比例随机划分;divideMode表示对数据划分的维度,我们这里选择'sample',也就是对样本进行划分;divideParam表示训练集、验证集与测试集所占比例,那么在这里,因为是直接用了先前随机森林方法(可以看这篇博客)中的数据划分方式,那么为了保证训练集、测试集的固定,我们就将divideParam.testRatio设置为0.0,然后将训练集与验证集比例划分为0.60.4

1.4 模型训练参数配置

接下来对模型运行过程中的主要参数加以配置。

ANNnet.performFcn = 'mse';
ANNnet.trainParam.epochs=5000;
ANNnet.trainParam.goal=0.01;

其中,performFcn为模型误差衡量函数,'mse'表示均方误差;trainParam.epochs表示训练时Epoch次数,trainParam.goal表示模型所要达到的精度要求(即模型运行到trainParam.epochs次时或误差小于trainParam.goal时将会停止运行。

1.5 神经网络实现

这一部分代码大多数与绘图、代码与GUI生成等相关,因此就不再一一解释了,大家可以直接运行。需要注意的是,train是模型训练函数。

% For a list of all plot functions type: help nnplot
ANNnet.plotFcns = {'plotperform','plottrainstate','ploterrhist','plotregression','plotfit'};
[ANNnet,tr] = train(ANNnet,x,t);
y = ANNnet(x);
e = gsubtract(t,y);
performance = perform(ANNnet,t,y);
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(ANNnet,trainTargets,y);
valPerformance = perform(ANNnet,valTargets,y);
testPerformance = perform(ANNnet,testTargets,y);
% view(net)
% Plots
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)
% Deployment
% See the help for each generation function for more information.
if (false)
    % Generate MATLAB function for neural network for application
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder
    % tools, or simply to examine the calculations your trained neural
    % network performs.
    genFunction(ANNnet,'myNeuralNetworkFunction');
    y = myNeuralNetworkFunction(x);
end
if (false)
    % Generate a matrix-only MATLAB function for neural network code
    % generation with MATLAB Coder tools.
    genFunction(ANNnet,'myNeuralNetworkFunction','MatrixOnly','yes');
    y = myNeuralNetworkFunction(x);
end
if (false)
    % Generate a Simulink diagram for simulation or deployment with.
    % Simulink Coder tools.
    gensim(ANNnet);
end

1.6 精度衡量

%% Accuracy of ANN

ANNPredictYield=sim(ANNnet,TestVARI')';
ANNRMSE=sqrt(sum(sum((ANNPredictYield-TestYield).^2))/size(TestYield,1));
ANNrMatrix=corrcoef(ANNPredictYield,TestYield);
ANNr=ANNrMatrix(1,2);
ANNRunNum=ANNRunNum+1;
ANNRMSEMatrix=[ANNRMSEMatrix,ANNRMSE];
ANNrAllMatrix=[ANNrAllMatrix,ANNr];
disp(ANNRunNum);
end
disp(ANNRMSE);

其中,ANNPredictYield为预测结果;ANNRMSEANNrMatrix分别为模型精度衡量指标RMSE与皮尔逊相关系数。结合本文1.1部分可知,我这里设置为当所得神经网络模型RMSE在400以内时,将会停止循环;否则继续开始执行本文1.2部分至1.6部分的代码。

1.7 保存模型

这一部分就不再赘述了,大家可以参考这篇博客(
https://blog.csdn.net/zhebushibiaoshifu/article/details/114806478)。

%% ANN Model Storage

ANNModelSavePath='G:\CropYield\02_CodeAndMap\00_SavedModel\';
save(sprintf('%sRF0417ANN0399.mat',ANNModelSavePath),'TestVARI','TestYield','TrainVARI','TrainYield','ANNnet','ANNPredictYield','ANNr','ANNRMSE',...
    'hiddenLayerSize');

2 完整代码

完整代码如下:

%% ANN Cycle Preparation
ANNRMSE=9999;
ANNRunNum=0;
ANNRMSEMatrix=[];
ANNrAllMatrix=[];
while ANNRMSE>1000

%% ANN
x=TrainVARI';
t=TrainYield';
trainFcn = 'trainlm';
hiddenLayerSize = [10 10 10];
ANNnet = fitnet(hiddenLayerSize,trainFcn);
ANNnet.input.processFcns = {'removeconstantrows','mapminmax'};
ANNnet.output.processFcns = {'removeconstantrows','mapminmax'};
ANNnet.divideFcn = 'dividerand';
ANNnet.divideMode = 'sample';
ANNnet.divideParam.trainRatio = 0.6;
ANNnet.divideParam.valRatio = 0.4;
ANNnet.divideParam.testRatio = 0.0;
ANNnet.performFcn = 'mse';
ANNnet.trainParam.epochs=5000;
ANNnet.trainParam.goal=0.01;
% For a list of all plot functions type: help nnplot
ANNnet.plotFcns = {'plotperform','plottrainstate','ploterrhist','plotregression','plotfit'};
[ANNnet,tr] = train(ANNnet,x,t);
y = ANNnet(x);
e = gsubtract(t,y);
performance = perform(ANNnet,t,y);
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(ANNnet,trainTargets,y);
valPerformance = perform(ANNnet,valTargets,y);
testPerformance = perform(ANNnet,testTargets,y);
% view(net)
% Plots
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)
% Deployment
% See the help for each generation function for more information.
if (false)
    % Generate MATLAB function for neural network for application
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder
    % tools, or simply to examine the calculations your trained neural
    % network performs.
    genFunction(ANNnet,'myNeuralNetworkFunction');
    y = myNeuralNetworkFunction(x);
end
if (false)
    % Generate a matrix-only MATLAB function for neural network code
    % generation with MATLAB Coder tools.
    genFunction(ANNnet,'myNeuralNetworkFunction','MatrixOnly','yes');
    y = myNeuralNetworkFunction(x);
end
if (false)
    % Generate a Simulink diagram for simulation or deployment with.
    % Simulink Coder tools.
    gensim(ANNnet);
end

%% Accuracy of ANN
ANNPredictYield=sim(ANNnet,TestVARI')';
ANNRMSE=sqrt(sum(sum((ANNPredictYield-TestYield).^2))/size(TestYield,1));
ANNrMatrix=corrcoef(ANNPredictYield,TestYield);
ANNr=ANNrMatrix(1,2);
ANNRunNum=ANNRunNum+1;
ANNRMSEMatrix=[ANNRMSEMatrix,ANNRMSE];
ANNrAllMatrix=[ANNrAllMatrix,ANNr];
disp(ANNRunNum);
end
disp(ANNRMSE);

%% ANN Model Storage
ANNModelSavePath='G:\CropYield\02_CodeAndMap\00_SavedModel\';
save(sprintf('%sRF0417ANN0399.mat',ANNModelSavePath),'AreaPercent','InputOutput','nLeaf','nTree',...
    'RandomNumber','RFModel','RFPredictConfidenceInterval','RFPredictYield','RFr','RFRMSE',...
    'TestVARI','TestYield','TrainVARI','TrainYield','ANNnet','ANNPredictYield','ANNr','ANNRMSE',...
    'hiddenLayerSize');

相关推荐

Excel技巧:SHEETSNA函数一键提取所有工作表名称批量生产目录

首先介绍一下此函数:SHEETSNAME函数用于获取工作表的名称,有三个可选参数。语法:=SHEETSNAME([参照区域],[结果方向],[工作表范围])(参照区域,可选。给出参照,只返回参照单元格...

Excel HOUR函数:“小时”提取器_excel+hour函数提取器怎么用

一、函数概述HOUR函数是Excel中用于提取时间值小时部分的日期时间函数,返回0(12:00AM)到23(11:00PM)之间的整数。该函数在时间数据分析、考勤统计、日程安排等场景中应用广泛。语...

Filter+Search信息管理不再难|多条件|模糊查找|Excel函数应用

原创版权所有介绍一个信息管理系统,要求可以实现:多条件、模糊查找,手动输入的内容能去空格。先看效果,如下图动画演示这样的一个效果要怎样实现呢?本文所用函数有Filter和Search。先用filter...

FILTER函数介绍及经典用法12:FILTER+切片器的应用

EXCEL函数技巧:FILTER经典用法12。FILTER+切片器制作筛选按钮。FILTER的函数的经典用法12是用FILTER的函数和切片器制作一个筛选按钮。像左边的原始数据,右边想要制作一...

office办公应用网站推荐_office办公软件大全

以下是针对Office办公应用(Word/Excel/PPT等)的免费学习网站推荐,涵盖官方教程、综合平台及垂直领域资源,适合不同学习需求:一、官方权威资源1.微软Office官方培训...

WPS/Excel职场办公最常用的60个函数大全(含卡片),效率翻倍!

办公最常用的60个函数大全:从入门到精通,效率翻倍!在职场中,WPS/Excel几乎是每个人都离不开的工具,而函数则是其灵魂。掌握常用的函数,不仅能大幅提升工作效率,还能让你在数据处理、报表分析、自动...

收藏|查找神器Xlookup全集|一篇就够|Excel函数|图解教程

原创版权所有全程图解,方便阅读,内容比较多,请先收藏!Xlookup是Vlookup的升级函数,解决了Vlookup的所有缺点,可以完全取代Vlookup,学完本文后你将可以应对所有的查找难题,内容...

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数在电商运营、物流对账等工作中,经常需要统计快递“揽收到签收”的耗时——比如判断某快递公司是否符合“3天内送达”的服务承...

Excel函数公式教程(490个实例详解)

Excel函数公式教程(490个实例详解)管理层的财务人员为什么那么厉害?就是因为他们精通excel技能!财务人员在日常工作中,经常会用到Excel财务函数公式,比如财务报表分析、工资核算、库存管理等...

Excel(WPS表格)Tocol函数应用技巧案例解读,建议收藏备用!

工作中,经常需要从多个单元格区域中提取唯一值,如体育赛事报名信息中提取唯一的参赛者信息等,此时如果复制粘贴然后去重,效率就会很低。如果能合理利用Tocol函数,将会极大地提高工作效率。一、功能及语法结...

Excel中的SCAN函数公式,把计算过程理清,你就会了

Excel新版本里面,除了出现非常好用的xlookup,Filter公式之外,还更新一批自定义函数,可以像写代码一样写公式其中SCAN函数公式,也非常强大,它是一个循环函数,今天来了解这个函数公式的计...

Excel(WPS表格)中多列去重就用Tocol+Unique组合函数,简单高效

在数据的分析和处理中,“去重”一直是绕不开的话题,如果单列去重,可以使用Unique函数完成,如果多列去重,如下图:从数据信息中可以看到,每位参赛者参加了多项运动,如果想知道去重后的参赛者有多少人,该...

Excel(WPS表格)函数Groupby,聚合统计,快速提高效率!

在前期的内容中,我们讲了很多的统计函数,如Sum系列、Average系列、Count系列、Rank系列等等……但如果用一个函数实现类似数据透视表的功能,就必须用Groupby函数,按指定字段进行聚合汇...

Excel新版本,IFS函数公式,太强大了!

我们举一个工作实例,现在需要计算业务员的奖励数据,右边是公司的奖励标准:在新版本的函数公式出来之前,我们需要使用IF函数公式来解决1、IF函数公式IF函数公式由三个参数组成,IF(判断条件,对的时候返...

Excel不用函数公式数据透视表,1秒完成多列项目汇总统计

如何将这里的多组数据进行汇总统计?每组数据当中一列是不同菜品,另一列就是该菜品的销售数量。如何进行汇总统计得到所有的菜品销售数量的求和、技术、平均、最大、最小值等数据?不用函数公式和数据透视表,一秒就...