百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

深度|Matlab编程之——卷积神经网络CNN代码解析

moboyou 2025-04-23 14:10 13 浏览

DeepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是 RasmusBerg Palm。

今天给介绍deepLearnToolbox-master中的CNN部分。

DeepLearnToolbox-master中CNN内的函数:

调用关系为:

该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例,每个样本特征为一个28*28=的向量。

网络结构为:

让我们来分析各个函数:

一、Test_example_CNN

三、cnntrain.m.

四、cnnff.m.

五、cnnbp.m.

五、cnnapplygrads.m.

六、cnntest.m.

一、Test_example_CNN:

1、设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅

2、cnnsetup函数 初始化卷积核、偏置等

3、cnntrain函数 训练cnn,把训练数据分成batch,然后调用

3.1 cnnff 完成训练的前向过程,

3.2 cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量)

3.3 cnnapplygrads 把计算出来的梯度加到原始模型上去

4、cnntest函数,测试当前模型的准确率

该模型采用的数据为mnist_uint8.mat,

含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。

把数据转成相应的格式,并归一化。

二、Cnnsetup.m

该函数你用于初始化CNN的参数。

设置各层的mapsize大小,初始化卷积层的卷积核、bias尾部单层感知机的参数设置bias统一设置为0,权重设置为:-1~1之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))

对于卷积核权重,输入输出为fan_in, fan_out

fan_out= net.layers{l}.outputmaps * net.layers{l}.kernelsize ^ 2;

%卷积核初始化,1层卷积为1*6个卷积核,2层卷积一共6*12=72个卷积核。对于每个卷积输出featuremap,%fan_in= 表示该层的一个输出map,所对应的所有卷积核,包含的神经元的总数。1*25,6*25

fan_in =numInputmaps * net.layers{l}.kernelsize ^ 2;

fin=1*25 or 6*25

fout=1*6*25 or 6*12*25

net.layers{l}.k{i}{j} =(rand(net.layers{l}.kernelsize) – 0.5) * 2 * sqrt(6 / (fan_in + fan_out));

1、卷积降采样的参数初始化

2、尾部单层感知机的参数(权重和偏量)设置:

三、cnntrain.m

该函数用于训练CNN。

生成随机序列,每次选取一个batch(50)个样本进行训练。

批训练:计算50个随机样本的梯度,求和之后一次性更新到模型权重中。

在批训练过程中调用:

Cnnff.m 完成前向过程

Cnnbp.m 完成误差传导和梯度计算过程

Cnnapplygrads.m把计算出来的梯度加到原始模型上去

四、cnnff.m

3、尾部单层感知机的数据处理,需要把subFeatureMap2连接成为一个(4*4)*12=192的向量,但是由于采用了50样本批训练的方法,subFeatureMap2被拼合成为一个192*50的特征向量fv;

Fv作为单层感知机的输入,全连接的方式得到输出层

五、cnnbp.m

该函数实现2部分功能,计算并传递误差,计算梯度

3、把单层感知机的输入层featureVector的误差矩阵,恢复为subFeatureMap2的4*4二维矩阵形式

插播一张图片:

4、误差在特征提取网络【卷积降采样层】的传播

如果本层是卷积层,它的误差是从后一层(降采样层)传过来,误差传播实际上是用降采样的反向过程,也就是降采样层的误差复制为2*2=4份。卷积层的输入是经过sigmoid处理的,所以,从降采样层扩充来的误差要经过sigmoid求导处理。

如果本层是降采样层,他的误差是从后一层(卷积层)传过来,误差传播实际是用卷积的反向过程,也就是卷积层的误差,反卷积(卷积核转180度)卷积层的误差,原理参看插图。

5、计算特征抽取层和尾部单层感知机的梯度

五、cnnapplygrads.m

该函数完成权重修改,更新模型的功能

1、更新特征抽取层的权重 weight+bias

2、更新末尾单层感知机的权重 weight+bias

六、cnntest.m

验证测试样本的准确率

点击“阅读原文”

相关推荐

cvpr 2024|注意力校准用于解缠结的文本到图像个性化

AttentionCalibrationforDisentangledText-to-ImagePersonalization研究背景近年来,大规模文本到图像(T2I)模型取得了显著进展,能...

1080P的显示,4K的享受?NVIDIA DSR游戏实测!

游戏玩家对画质的要求越来越高,因此每到新一代显卡推出的时候,除了游戏性能的提升之外,也会采用提升画质的新技术。NVIDIA最新的Geforce900系列显卡也不例外,一起推出的DSR技术号称可以在1...

「学习OpenCV4」OpenCV线性滤波与非线性滤波总结

本文分享内容来自图书《学习OpenCV4:基于Python的算法实战》,该书内容如下:第1章OpenCV快速入门;第2章图像读写模块imgcodecs;第3章核心库模块core;第4章...

增益映射耦合局部正则化的图像重构算法

朱莉(西安科技大学计算机学院,陕西西安710054)摘要:针对当前的图像重构方法在对多帧超分辨率图像复原时,存在明显的模糊效应与振铃效应的不足,提出增益映射控制耦合局部正则化的图像重构算法。首...

图像处理——5种常见的平滑滤波

平滑滤波是一种简单又常见的图像处理操作。平滑图像的目的有很多,但通常都是为了减少噪声和伪影。在OpenCV中共有5种平滑滤波操作,分别是以下几种:测试代码如下:#include<iostream...

C# 图像处理技术——简单的滤波去噪

在C#中,可以使用System.Drawing命名空间中的类来进行图像处理和滤波去噪操作。以下是一个示例代码,演示如何使用平均滤波器进行简单的去噪处理:usingSystem.Drawing;us...

Java,OpenCV,图像模糊,归一化均值滤波,中值滤波器,高斯模糊

图像模糊图像模糊是图像处理中最简单和常用的操作之一,其主要目的之一是给图像预处理的时候降低图像噪声。图像模糊方法可以总结如下:1、归一化均值滤波器(API为blur())2、高斯滤波器(API为Ga...

带频偏校准的GMSK解调器设计与实现

郑婧怡1,高绍全1,姜汉钧1,张春1,王志华1,2,贾雯2(1.清华大学微电子所,北京100084;2.深圳清华大学研究院,广东深圳518055)摘要:提出了一种在零中频低功耗蓝牙接收机中使用...

图像滤波去噪方法及应用场景

在图像处理中,不同滤波方法针对不同类型的噪声和场景具有特定优势。以下是三种常见滤波器的特点和应用场景总结:1.高斯滤波(GaussianFilter)原理:基于高斯函数的加权平均,对邻域像素进行平...

多体系统动力学仿真软件(DAP)

多体系统动力学仿真软件(DAP)-北京西交智众软件科技有限公司–DAP软件简介DAP(DynamicsAnalysisPlatform)软件,源自西南交通大学沈志云院士带队轨道交通运载系统全国...

精品博文图文详解Xilinx ISE14.7 安装教程

在软件安装之前,得准备好软件安装包,可从Xilinx官网上下载:http://china.xilinx.com/support/download/index.html/content/xilinx/z...

酷睿 Ultra 5 和 Ultra 7,或者i5和i7差距多大?

#我来唠家常#提到ultra,我觉得看这个题目,应该主打轻薄本,或者设计本。分两个问题看:ultra7或者i7的优势,ultra相对老款处理器的优势Ultra7的最大优势是:多了2个大核心,这两个大...

直流-直流(DC-DC)变换电路

直流-直流(DC-DC)变换电路,可以将一种直流电源经过变换电路后输出另一种具有不同输出特性的直流电源,可以是一种固定电压或可调电压的直流电。按照电路拓扑结构的不同,DC-DC变换电路可以分成两种形式...

Energies CL致命错误

期刊基础信息·刊号:ISSN1996-1073·全称:Energies·影响因子:3.2·分区:Q2(能源与燃料类)·版面费:2200瑞士法郎·年发文量:约4500篇CoverLett...

基于心电脉搏信号的无创血压算法研究

洋洋,陈小惠(南京邮电大学自动化学院,江苏南京210023)摘要:针对人体血压无创检测问题,提出了一种基于心电信号(Electrocardiogram,ECG)与光电容积脉搏波(Photople...