百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

MATLAB《自动控制原理》相关编程(二)

moboyou 2025-05-07 13:38 5 浏览

摘要:本文主要讲解自动控制原理中涉及的相关MATLAB函数,包括拉式变换和反拉式变换、传递函数的化简(并联和串联)、带延时的传递函数、单位速度、单位加速度和其他任意输入的响应。


1.拉式变换 时域函数转化为s域

laplace 函数

语法

laplace(f)
laplace(f,transVar)
laplace(f,var,transVar)
描述
laplace(f)返回f的拉普拉斯变换。默认情况下,自变量为t,变换变量为s。
laplace(f,transVar)使用转换变量transVar代替s。
laplace(f,var,transVar)分别使用自变量var和转换变量transVar代替t和s。
clc;
clear all;
close all;
syms x y
f = 1/sqrt(x);
laplace(f)

运行结果

ans =


pi^(1/2)/s^(1/2)
clc;
clear all;
close all;
syms a t
f = exp(-a*t);
f1 = laplace(f)
syms a y t
f = exp(-a*t);
f2 = laplace(f,y)
f3 = laplace(f,a,y)

运行结果

f1 =

1/(a + s)

f2 =
1/(a + y)
f3 =
1/(t + y)

程序

clc;
clear all;
close all;
syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
laplace(M,vars,transVars)

运行结果

ans =


[    exp(x)/a,    1/b]
[ 1/(c^2 + 1), 1i/d^2]

实例

时域函数f(t) = 2e^(-3t)+3sin2t-2cost,转化为拉式变化。

clc;
clear all;
close all;
syms t 
f = 2*exp(-3*t)+3*sin(2*t)-2*cos(t);
G =laplace(f)
t = 0:0.1:10;
f = 2*exp(-3.*t)+3*sin(2.*t)-2*cos(t);
figure;
plot(t,f,'b-');
xlabel('t');
ylabel('f(t)');

运行结果

G =

2/(s + 3) - (2*s)/(s^2 + 1) + 6/(s^2 + 4)

laplace 函数

语法

laplace(f)
laplace(f,transVar)
laplace(f,var,transVar)

描述

laplace(f)返回f的拉普拉斯变换。默认情况下,自变量为t,变换变量为s。

laplace(f,transVar)使用转换变量transVar代替s。

laplace(f,var,transVar)分别使用自变量var和转换变量transVar代替t和s。

clc;
clear all;
close all;
syms x y
f = 1/sqrt(x);
laplace(f)

运行结果

ans =


pi^(1/2)/s^(1/2)
clc;
clear all;
close all;
syms a t
f = exp(-a*t);
f1 = laplace(f)
syms a y t
f = exp(-a*t);
f2 = laplace(f,y)
f3 = laplace(f,a,y)

运行结果



f1 =


1/(a + s)




f2 =


1/(a + y)




f3 =


1/(t + y)


clc;
clear all;
close all;
syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
laplace(M,vars,transVars)

运行结果

ans =


[    exp(x)/a,    1/b]
[ 1/(c^2 + 1), 1i/d^2]

实例

时域函数f(t) = 2e^(-3t)+3sin2t-2cost,转化为拉式变化。

clc;
clear all;
close all;
syms t 
f = 2*exp(-3*t)+3*sin(2*t)-2*cos(t);
G =laplace(f)
t = 0:0.1:10;
f = 2*exp(-3.*t)+3*sin(2.*t)-2*cos(t);
figure;
plot(t,f,'b-');
xlabel('t');
ylabel('f(t)');

运行结果

G =


2/(s + 3) - (2*s)/(s^2 + 1) + 6/(s^2 + 4)

laplace 函数

语法

laplace(f)
laplace(f,transVar)
laplace(f,var,transVar)

描述

laplace(f)返回f的拉普拉斯变换。默认情况下,自变量为t,变换变量为s。

laplace(f,transVar)使用转换变量transVar代替s。

laplace(f,var,transVar)分别使用自变量var和转换变量transVar代替t和s。

clc;
clear all;
close all;
syms x y
f = 1/sqrt(x);
laplace(f)

运行结果

ans =


pi^(1/2)/s^(1/2)
clc;
clear all;
close all;
syms a t
f = exp(-a*t);
f1 = laplace(f)
syms a y t
f = exp(-a*t);
f2 = laplace(f,y)
f3 = laplace(f,a,y)

运行结果



f1 =


1/(a + s)




f2 =


1/(a + y)




f3 =


1/(t + y)


clc;
clear all;
close all;
syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
laplace(M,vars,transVars)

运行结果

ans =


[    exp(x)/a,    1/b]
[ 1/(c^2 + 1), 1i/d^2]

实例

时域函数f(t) = 2e^(-3t)+3sin2t-2cost,转化为拉式变化。

clc;
clear all;
close all;
syms t 
f = 2*exp(-3*t)+3*sin(2*t)-2*cos(t);
G =laplace(f)
t = 0:0.1:10;
f = 2*exp(-3.*t)+3*sin(2.*t)-2*cos(t);
figure;
plot(t,f,'b-');
xlabel('t');
ylabel('f(t)');

运行结果

G =


2/(s + 3) - (2*s)/(s^2 + 1) + 6/(s^2 + 4)

2. 反拉式变换ilaplace 函数

语法

ilaplace(F)
ilaplace(F,transVar)
ilaplace(F,var,transVar)
clc;
clear all;
close all;
syms s
Fs = (s+54)/(((s+2)^2)*(s+1));
f = ilaplace(Fs)
t = 0:0.1:10;
f1=53*exp(-t) - 53.*exp(-2*t) - 52.*t.*exp(-2*t);
figure;
plot(t,f1,'r-');
xlabel('t');
ylabel('f(t)');

运行结果



f =


53*exp(-t) - 53*exp(-2*t) - 52*t*exp(-2*t)

3.parallel函数

语法

sys=parallel(sys1,sys2) 
sys=parallel(sys1,sys2,inp1,inp2,out1,out2) 
sys=parallel(sys1,sys2,'name')


4. series 函数 串联函数

语法

sys = series(sys1,sys2) 
sys = series(sys1,sys2,outputs1,inputs2)

实例

程序

clc;
clear all;
close all;
num1=1;
den1=[1 1];
sys1=tf(num1,den1);
num2=1;
den2=[3 4 1];
sys2=tf(num2,den2);
G1 = parallel(sys1,sys2);
num3 = 1;
den3 = [1 0];
G2 = tf(num3,den3);
disp('系统的开环传递函数')
G = series(G1,G2)
disp('系统的闭环传递函数')
Gs = feedback(G,1)
num = [3 5 2];
den = [3 7 8 6 2];
disp('零极点增益模型')
[z,p,K] = tf2zp(num,den)
figure;
pzmap(G,'b');

运行结果

系统的开环传递函数
G =
 
       3 s^2 + 5 s + 2
  -------------------------
  3 s^4 + 7 s^3 + 5 s^2 + s
 
Continuous-time transfer function.
系统的闭环传递函数

Gs =
 
          3 s^2 + 5 s + 2
  -------------------------------
  3 s^4 + 7 s^3 + 8 s^2 + 6 s + 2
 
Continuous-time transfer function.
零极点增益模型
z =
   -1.0000
   -0.6667

p =
  -0.2942 + 0.8991i
  -0.2942 - 0.8991i
  -1.0000 + 0.0000i
  -0.7449 + 0.0000i

K =
     1

5.输入一个带时延的传递函数

程序


clc;
clear all;
close all;
num = [3 5 2];
den = [3 7 8 6 2];
time = 5;
disp('传递函数')
G = tf(num,den)
disp('带时延的传递函数');
Gt=tf(num,den,'ioDelay',time)
figure;
subplot(2,1,1);
step(G);
grid on;
subplot(2,1,2);
step(Gt);
grid on;

运行结果

传递函数


G =
 
          3 s^2 + 5 s + 2
  -------------------------------
  3 s^4 + 7 s^3 + 8 s^2 + 6 s + 2
 
Continuous-time transfer function.


带时延的传递函数


Gt =
 
                      3 s^2 + 5 s + 2
  exp(-5*s) * -------------------------------
              3 s^4 + 7 s^3 + 8 s^2 + 6 s + 2
 
Continuous-time transfer function.

6.单位速度、单位加速度和其他任意输入响应

lsim函数:lsim函数是针对线性时不变模型,给定任意输入,得到任意输出。lsim函数表示任意输入函数的响应,连续系统对任意输入函数的响应可以利用lsim函数求取。

语法

lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,method)
lsim(sys1,...,sysn,u,t)
 lsim(sys1,LineSpec1,...,sysN,LineSpecN,u,t)
lsim(A,B,C,D,u,t)
 y = lsim(___)
 [y,t,x] = lsim(___)
 lsim(sys)
lsim(sys,u,t)绘制动态系统模型sys对输入历史记录(t,u)的模拟时间响应。向量t指定用于仿真的时间样本。
对于单输入系统,输入信号u是与t长度相同的向量。对于多输入系统,u是一个数组,其行数与时间
样本(length(t))一样多,而列数与sys的输入一样多。
lsim(sys,u,t,x0)当sys是状态空间模型时,进一步指定初始状态值的向量x0。
lsim(sys,u,t,x0,method)当sys是连续时间模型时,如何在样本之间插入输入值,method即插入输入
值的方法。

实例

clc;
clear all;
close all;
num = [2 20 4];
den = [1 15 84 223 309 240 100];
disp('闭环系统传递函数:')
Gs = tf(num,den)
figure;
subplot(2,1,1);
t = 0:0.1:10;
u = t;
lsim(Gs,u,t);
subplot(2,1,2);
[y,t1] = lsim(Gs,u,t);
plot(t,u,'r-.')
hold on;
plot(t,y,'g-*');
xlabel('时间/s');
legend('输入信号u(t)','系统输出响应y(t)');
figure;
t = 0:0.1:10;
u = 1/2.*t.^2;
lsim(Gs,u,t);
figure;
u = 2*sin(2*t)+6.*t;
lsim(Gs,u,t);

7.gensig函数

gensig函数主要为lsim函数生成测试输入信号,从而测试单输入线性系统对特定信号的响应。

语法

[u,t] = gensig(type,ta)
[u,t] = gensig(type,ta,tf,ts)
说明
u为信号序列,t为时间序列
type为类型,包括:sin(正弦波),square(方波),pluse(周期脉冲)
ta为type类型的周期,tf为持续时间,ts为采样时间。

实例

clc;
clear all;
close all;
%如生产一个周期位6s,持续时间为36s,采样时间为0.1s的方波
[u,t] = gensig('square',6,36,0.1);
figure;
plot(t,u,'g-*')
axis([0 36 -1 1.5])


[u,t] = gensig('sin',6,36,0.1);
figure;
plot(t,u,'r-s')
axis([0 36 -1 1.5])


[u,t] = gensig('pulse',6,36,0.1);
figure;
plot(t,u,'b-.')
axis([0 36 -1 1.5])

实例

clc;
clear all;
close all;
num = [2 20 4];
den = [1 15 84 223 309 240 100];
disp('闭环系统传递函数:')
Gs = tf(num,den)
[u1,t1] = gensig('square',6,36,0.1);
figure;
subplot(3,1,1)
lsim(Gs,u1,t1);
subplot(3,1,2)
[u2,t2] = gensig('sin',6,36,0.1);
lsim(Gs,u2,t2);
subplot(3,1,3)
[u3,t3] = gensig('pulse',6,36,0.1);
lsim(Gs,u3,t3);
A = [-3 -1.5; 5 0];
B = [1; 0];
C = [0.5 1.5];
D = 0;
sys = ss(A,B,C,D);
figure;
[u,t] = gensig("square",10,20);
lsim(sys,u,t)
grid on


参考内容

[1] 知乎作者永不止步的文章《Matlab中lsim函数使用》文章链接:
https://zhuanlan.zhihu.com/p/518506593


本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。


作 者 | 郭志龙
编 辑 | 郭志龙
校 对 | 郭志龙

相关推荐

声学EI要完稿?十步速写法

【推荐会议】国际声学与振动会议(ICAV)会议号:CFP23112A截稿时间:2025年4月20日召开时间/地点:2025年8月15-17日·新加坡论文集上线:会后3个月提交EiComp...

结构力学!EI会议图表规范秘籍

推荐会议:国际结构与材料工程进展大会(ISME2026)会议编号:EI#73521截稿时间:2026年3月10日召开时间/地点:2026年8月15-17日·德国柏林论文集上线:会后4...

傅里叶级数物理意义的直观理解:利用傅里叶级数逼近方波信号

上篇文章将向大家介绍频谱的概念,对傅里叶级数、傅里叶积分、傅里叶变换进行了数学的推导,并解释了它们各自的物理意义。推导过程见我的上一篇文章:频谱分析——频谱概念(傅里叶变换、级数、积分及物理意义)如下...

通过对航空发动机整机振动进行分析,有何控制方法?

前言针对航空发动机整机振动问题的复杂性和多样性,以整机振动的振源分析为出发点,总结国内外关于转子系统故障、气流激振、轴承故障、齿轮故障和结构局部共振等引起的整机振动的研究情况。结合航空发动机整机结构动...

MATLIB中使用PCA

主成分分析PCA(PrincipalComponentsAnalysis),奇异值分解SVD(Singularvaluedecomposition)是两种常用的降维方法降维致力于解决三类问题:降维...

数据处理|软件:让科研更简单2

书接上回,继续介绍免费的数据处理软件。eGPS一款热图绘制专用软件,热图就是用颜色代表数字,让数据呈现更直观,对比更明显。优点:小巧方便,基本功能齐全,包括数据转换、聚类分析、颜色调整等等缺点:常见的...

电力系统常用的通讯协议及其在Speedgoat系统中的实现

在电力系统中,IEC61850协议、DNP3协议、ModbusTCP广泛应用于远程终端设备(RTU)、智能电子设备(IED)交互以及监控和数据采集(SCADA)系统。一、IEC61850协议IE...

电子工程师的常用仿真软件

不知道从事电子行业的工程师,有没有使用模拟仿真工具,仿真软件网上又有很多,初学者,可能只知道Multisim和Proteus。一般Multisim适合在学习模拟电路和电路分析原理课程时使用,便于理解电...

技术论文|异结构混沌系统的组合同步控制及电路实现

欢迎引用[1]李贤丽,马赛,樊争先,王壮,马文峥,于婷婷.异结构混沌系统的组合同步控制及电路实现[J].自动化与仪器仪表,2022,No.276(10):80-84.DOI:10.14016/j.cn...

现场︱某110KV主变事故过程仿真分析

三峡电力职业学院、河南省电力公司洛阳供电公司的研究人员李莉、任幼逢、徐金雄、王磊,在2016年第6期《电气技术》杂志上撰文,针对某110KV变电站主变差动保护跳闸事故,结合事故相关检测数据,通过MAT...

光伏发电系统篇:单级式并网系统实时仿真

在全球积极推动清洁能源转型的大背景下,光伏发电作为重要的可再生能源利用方式,得到了广泛关注和迅猛发展。目前常用的光伏并网及光伏电站主要拓扑结构有单级式和双级式。相较于传统的多级式系统,单级式光伏发电并...

光伏发电系统篇:三电平并网逆变器实时仿真

一、三电平并网逆变器在能源转型加速的当下,分布式能源接入电网需求大增。三电平并网逆变器凭借低谐波、高功率密度等优势,有效提升电能转换效率,于新能源并网发电中担当关键角色。常见的三电平电路拓扑结构包括二...

自制3.5KW大功率逆变器,很简单,看过这个电路原理就懂了

前言拿下8000元奖金的项目,是什么水平?本项目经过联合湖南科技大学光伏逆变以及电力电子研究生团队共同探讨方案。项目成本:1200元,获得奖金:8000元!参加赛事:立创开源硬件平台_星火计划·外包赛...

圈内分享:电容式加速度计接口电路非线性建模与仿真设计

摘要:非线性是Sigma-Delta(ΣΔ)加速度计系统的关键指标之一。基于一个五阶ΣΔ加速度计结构,分析了其主要的非线性模块,在MATLAB中建立了整体结构的行为级模型,并利用根轨迹法进行了稳...

基于Matlab/Simulink建立一种Thevenin/RC电池模块仿真模型

本文以锂电池数学模型为基础,在Matlab/Simulink的仿真系统中,建立了一种Thevenin/RC电池模块仿真模型,通过实际工况试验,测试精度在允许误差范围内,为电池SOC/SOH研究提供了极...