百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

MATLAB中SVM的用法

moboyou 2025-04-22 00:39 11 浏览

LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式识别问题。注意不是matlab自带的svm实现函数。

  1. model = libsvmtrain(training_label_vector, training_instance_matrix [, ‘libsvm_options’]);

这个函数有三个参数,其中

-training_label_vector:训练样本的类标,如果有m个样本,就是m x 1的矩阵(类型必须为double)。这里可以是二分类和多分类,类标是(-1,1)、(1,2,3)或者其他任意用来表示不同的类别的数字,要转成double类型。


-training_instance_matrix:训练样本的特征,如果有m个样本,每个样本特征是n维,则为m x n的矩阵(类型必须为double)。

-libsvm_options:训练的参数,在第3点详细介绍。

libsvmtrain函数返回训练好的SVM分类器模型model是一个结构体,包含以下成员:

-Parameters: 一个5 x 1的矩阵,从上到下依次表示:

-s SVM类型(默认0);

-t 核函数类型(默认2)

-d 核函数中的degree设置(针对多项式核函数)(默认3);

-g 核函数中的r(gamma)函数设置(针对多项式/rbf/sigmoid核函数) (默认类别数目的倒数);

-r 核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)

-nr_class: 表示数据集中有多少类别,比如二分类时这个值即为2。

-totalSV: 表示支持向量的总数。

-rho: 决策函数wx+b中的常数项的相反数(-b)。

-Label: 表示数据集中类别的标签,比如二分类常见的1和-1。

-ProbA: 使用-b参数时用于概率估计的数值,否则为空。

-ProbB: 使用-b参数时用于概率估计的数值,否则为空。

-nSV: 表示每类样本的支持向量的数目,和Label的类别标签对应。如Label=[1; -1],nSV=[63; 67],则标签为1的样本有63个支持向量,标签为-1的有67个。

-sv_coef: 表示每个支持向量在决策函数中的系数。

-SVs: 表示所有的支持向量,如果特征是n维的,支持向量一共有m个,则为m x n的稀疏矩阵。

另外,如果在训练中使用了-v参数进行交叉验证时,返回的不是一个模型,而是交叉验证的分类的正确率或者回归的均方根误差。

当构建完成model后,还要为上述参数选择合适的值,方法主要有Gridsearch,其他的感觉不常用,Gridsearch说白了就是穷举。

网格参数寻优函数(分类问题):SVMcgForClass

[bestCVaccuracy,bestc,bestg]=SVMcgForClass(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)

输入:

train_label:训练集的标签,格式要求与svmtrain相同。

train:训练集,格式要求与svmtrain相同。

cmin,cmax:惩罚参数c的变化范围,即在[2^cmin,2^cmax]范围内寻找最佳的参数c,默认值为cmin=-8,cmax=8,即默认惩罚参数c的范围是[2^(-8),2^8]。

gmin,gmax:RBF核参数g的变化范围,即在[2^gmin,2^gmax]范围内寻找最佳的RBF核参数g,默认值为gmin=-8,gmax=8,即默认RBF核参数g的范围是[2^(-8),2^8]。

v:进行Cross Validation过程中的参数,即对训练集进行v-fold Cross Validation,默认为3,即默认进行3折CV过程。

cstep,gstep:进行参数寻优是c和g的步进大小,即c的取值为2^cmin,2^(cmin+cstep),…,2^cmax,,g的取值为2^gmin,2^(gmin+gstep),…,2^gmax,默认取值为cstep=1,gstep=1。

accstep:最后参数选择结果图中准确率离散化显示的步进间隔大小([0,100]之间的一个数),默认为4.5。

输出:

bestCVaccuracy:最终CV意义下的最佳分类准确率。

bestc:最佳的参数c。

bestg:最佳的参数g。

网格参数寻优函数(回归问题):SVMcgForRegress

[bestCVmse,bestc,bestg]=SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)

其输入输出与SVMcgForClass类似,这里不再赘述。

SVM 怎样能得到好的结果:

  1. 对数据做归一化(simple scaling)
  2. 应用 RBF kernel
  3. 用cross-validation和grid-search 得到最优的c和g
  4. 用得到的最优c和g训练训练数据
  5. 测试

libsvm使用误区:

(1) 直接将训练集合和测试集合简单归一化到[0,1]区间,可能导致实验结果很差。

(2) 如果样本的特征数非常多,那么就不必使用RBF核将样本映射到高维空间。

a) 在特征数非常多的情况下,使用线性核,结果已经非常好,并且只需要选择参数C即可。

b) 虽然说RBF核的结果至少比线性核好,前提下搜索整个的空间。

(3) 样本数<<特征数的情况:推荐使用线性核,可以达到与RBF同样的性能。

(4) 样本数和特征数都非常多:推荐使用liblinear,更少的时间和内存,可比的准确率。

(5) 样本数>>特征数:如果想使用线性模型,可以使用liblinear,并且使用-s 2参数

相关推荐

黄道十二宫杀手密码51年后被破解,来自两位程序员和数学家合作

杨净边策发自凹非寺量子位报道|公众号QbitAI黄道十二宫杀手(ZodiacKiller)可能是世界上最知名的高智商连环杀手,52年来从未被抓获。他的事迹已被改编成了多部好莱坞电影。△...

深入剖析MediaCodec解码器的基本原理及使用「建议新手收藏」

一,MediaCodec工作原理MediaCodec类Android提供的用于访问低层多媒体编/解码器接口,它是Android低层多媒体架构的一部分,通常与MediaExtractor、MediaMu...

Retrofit WebService 实践

前言作为Android开发,平时和后端聊得最多的除了喝酒就是接口。常用语:Restful和WebService,前者现在聊得多,后者以前聊得多。默认含义分别为:Restful:HTTP协议...

建议收藏!175部4K UHD版本经典高分电影洗版参考目录(2015之前)

本内容来源于@什么值得买APP,观点仅代表作者本人|作者:1L789近两年很多经典高分老电影陆续开始重制成4KUHD版本,虽然我早已将这些电影的BD蓝光版收入,但纠结一番后还是花了不少时间将其全部...

2 个月的面试亲身经历告诉大家,如何进入 BAT 等大厂?

这篇文章主要是从项目来讲的,所以,从以下几个方面展开。怎么介绍项目?怎么介绍项目难点与亮点?你负责的模块?怎么让面试官满意?怎么介绍项目?我在刚刚开始面试的时候,也遇到了这个问题,也是我第一个思考的问...

详解Android官推Kotlin-First的图片加载库

前言Coil是一个非常年轻的图片加载库,在2020年10月22日才发布了1.0.0版本,但却受到了Android官方的推广,在AndroidDevelopersBackst...

webview 渲染机制:硬件加速方式渲染的Android Web

webview渲染是什么?webview渲染是用于展现web页面的控件;webview可以内嵌在移动端,实现前端的混合式开发,大多数混合式开发框架都是基于webview模式进行二次开发的w...

因为我对Handler的了解,居然直接给我加了5K

1Handler是什么?android提供的线程切换工具类。主要的作用是通过handler实现从子线程切换回主线程进行ui刷新操作。1.1为什么Handler能实现线程切换?在创建Handler的...

「经典总结」一个View,从无到有会走的三个流程,你知道吗?

前言一个View,从无到有会走三个流程,也就是老生常谈的measure,layout,draw三流程我们都知道Android视图是由一层一层构成的层级结构,直白点说,就是父View包含子View而子V...

这些垃圾代码是谁写的?哦,原来小丑竟是我自己

程序员是最喜欢自嘲、自黑的群体之一,比如他们常常称自己是“码农”、“程序猿”,再比如他们的工作明明是写代码、修Bug,也有人调侃说:“明明我们是修代码、写Bug!”本文整理了一些程序员“修代码、写...

手把手教你爬取天堂网1920*1080大图片(批量下载)——理论篇

/1前言/平时我们要下载图片,要要一个一个点击下载是不是觉得很麻烦?那有没有更加简便的方法呢?答案是肯定的,这里我们以天堂网为例,批量下载天堂网的图片。/2项目准备工作/首先我们第一步我们要安装...

音视频开发需要你懂得 ffmpeg 开源库的编码原理

引言音视频开发需要你懂得音视频中一些基本概念,针对编解码而言,我们必须提前懂得编解码器的一些特性,码流的结构,码流中一些重要信息如sps,pps,vps,startcode以及基本的工作原理,...

「8年老 Android 开发」最全最新 Android 面试题系列全家桶(带答案)

下面跟大家分享的这些面试题都是互联网大厂真实流出的面试内容,每个问题都附带完整详细的答案,不像网上的那些资料三教九流有的甚至还没答案,这些面试题我也是经过日积月累才整理出来的精品资料。这些面试题主要是...

手把手教你爬取天堂网1920*1080大图片(批量下载)——实战篇

/1前言/上篇文章手把手教你爬取天堂网1920*1080大图片(批量下载)——理论篇我们谈及了天堂网站图片抓取的理论,这篇文章将针对上篇文章的未尽事宜进行完善,完成图片的批量抓取。/2图片网址解...

PHP 8.1.9 更新发布

CLI:修复了内置服务器通过PHP_CLI_server_WORKERS环境变量的潜在溢出。修正了GH-8952(不再可能有意关闭std句柄)。Core:修复了GH-8923的错误(Windows上的...