百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

MATLAB二分法求方程的根(实例加程序)

moboyou 2025-04-26 18:34 11 浏览

零点的存在性定理
早在高中阶段,我们就学习过函数的零点存在性定理。简单地说,对于区间[a,b]上的连续函数f(x),如果满足f(a)f(b)<=0,那么函数在[a,b]上至少存在一个零点。

根据函数与方程的关系我们可以得到,对于相应的方程f(x)=0。如果方程的左侧在a,b处不同号,那么,方程在[a,b]上存在零点。


二分法的思想
在得到根的存在性之后,我们就希望找到或者逼近方程的根。这种情况下比较显然的一种方式就是二分法。二分法的基本步骤如下:


实例1

程序


clc;
clear all;
close all;
Re = 1e4;%赋值Re的值
C = 0.57;%%赋值C的值
%第二问程序
f= @(beta) 0.5959+0.0312.*beta.^(2.1)-0.184*beta.^8+(91.71.*beta.^(2.5)./(Re^0.75))-C;%设置目标函数
a =0.9;%赋值a
b = 1;%赋值b
eps = 1e-6;%赋值eps
T = bisect(f,a,b,eps);%调用函数
data = [T(:,6) T(:,end)+C T(:,end)]; %输出求解的beta  C error
save('data93552.txt','data','-ascii');

function T = bisect(f,a,b,eps)
%%
%输入
%f代表输入的函数 a,b代表区间范围[a,b],eps是输入的误差
%T代表输出的参数 
%包括迭代次数  左区间a  a点函数值  右区间b b点函数值  区间a和b的中点值xk   xk点函数值
%%
k=1%设置初始值
x=(a+b)/2;%设置初始区间中点
fprintf('        k        a        f(a)       b        f(b)       xk        f(xk)\n ');%输出变量的名字
T=[k,a,f(a),b,f(b),x,f(x)];%对T赋值
while abs(T(k,4)-T(k,6))>eps/2   %判断和误差的大小
    k=k+1;%循环计数
    if  f(x)*f(a)==0   %判断当函数值为0的时候
        a=a;%左区间重新赋值
        b=x;%右区间重新赋值
        x=(a+b)/2;%区间中点重新赋值
        T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
        break
    elseif  f(x)*f(a)>0  %判断当f(x)和f(a)同号的情况
        a=x;%左区间重新赋值
        b=b;%右区间重新赋值
        x=(a+b)/2;%区间中点重新赋值
        T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
    elseif  f(x)*f(a)<0   %判断当f(x)和f(a)异号的情况
        a=a;%左区间重新赋值
        b=x;%右区间重新赋值
        x=(a+b)/2;%区间中点重新赋值
        T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
    end
 
end
disp(T);%输出变量T
fprintf('经过%d次迭代,函数方程根的近似解为:x=%.8f\n',k-1,T(k-1,6))%输出迭代过程
error = T(:,7);%误差
figure;%新建一个窗口
plot(1:k,error,'r');%画图
xlabel('k');%设置横轴坐标
ylabel('error value');%设置纵轴坐标
end

运行结果


结果:

k =

     1

        k        a        f(a)       b        f(b)       xk        f(xk)
     1.0000    0.9000    0.0422    1.0000   -0.0352    0.9500    0.0125
    2.0000    0.9500    0.0125    1.0000   -0.0352    0.9750   -0.0087
    3.0000    0.9500    0.0125    0.9750   -0.0087    0.9625    0.0025
    4.0000    0.9625    0.0025    0.9750   -0.0087    0.9688   -0.0029
    5.0000    0.9625    0.0025    0.9688   -0.0029    0.9656   -0.0002
    6.0000    0.9625    0.0025    0.9656   -0.0002    0.9641    0.0012
    7.0000    0.9641    0.0012    0.9656   -0.0002    0.9648    0.0005
    8.0000    0.9648    0.0005    0.9656   -0.0002    0.9652    0.0002
    9.0000    0.9652    0.0002    0.9656   -0.0002    0.9654    0.0000
   10.0000    0.9654    0.0000    0.9656   -0.0002    0.9655   -0.0001
   11.0000    0.9654    0.0000    0.9655   -0.0001    0.9655   -0.0000
   12.0000    0.9654    0.0000    0.9655   -0.0000    0.9655   -0.0000
   13.0000    0.9654    0.0000    0.9655   -0.0000    0.9654   -0.0000
   14.0000    0.9654    0.0000    0.9654   -0.0000    0.9654   -0.0000
   15.0000    0.9654    0.0000    0.9654   -0.0000    0.9654    0.0000
   16.0000    0.9654    0.0000    0.9654   -0.0000    0.9654    0.0000
   17.0000    0.9654    0.0000    0.9654   -0.0000    0.9654   -0.0000
   18.0000    0.9654    0.0000    0.9654   -0.0000    0.9654   -0.0000

经过17次迭代,函数方程根的近似解为:x=0.96543503

实例2

程序

clc;
clear all;
close all;
syms U L;    %将区间上下限定为变量
f=@(x) exp(x)-x^2+3*x-2;    %求给定的函数
U=1;    
L=0;
while U-L>1e-10   %设定精度
    root=(U+L)/2;    %当根的区间大于所给精度时,利用二分法重新规划求根区间
    if f(root)==0    
        break;    %r恰好为所求根,直接跳出循环
    end
    if f(root)*f(U)<0    %用零点存在定理判断根所在的区域
        L=root;
    else
        U=root;
    end
end
root  
%结果 root =0.2575

运行结果

%结果 root =0.2575

实例3

程序


clc;
clear all;
close all;

% -------------- inputs -------------------
f = @(x) 3*x^2-x-3;
a = 0;
b = 2;
% tolerance / max iter
TOL = 1e-4; NI = 50;
% -------------------------------------------------------
% STEP 1: initialization
i = 1;
fa = f(a);
converge = false; % convergence flag
% STEP 2: iteration
while i<=NI
% STEP 3: compute p at the i's step
p = a+(b-a)/2;
fp = f(p);
% STEP 4: check if meets the stopping criteria
if (abs(fp)<eps || (b-a)/2 < TOL) % eps is Matlab-machine zero
converge = true; % bisection method converged!
break; % exit out of while loop
else
% STEP 5
i = i+1;
% STEP 6
if fa*fp > 0
a = p; fa = fp;
else
b = p;
end
end
end
b
f(b)

运行结果


b =

    1.1805


ans =

   4.9619e-04

实例4


clc;
clear all;
close all;
a = 1;
b = 1.5;
tol = 1e-8;
x = half(a, b, tol)
function x = half(a, b, tol)% tol 是 tolerance 的缩写,表示绝对误差
c = (a + b) / 2; k = 1;
m = 1 + round((log(b - a) - log(2 * tol)) / log(2)); % <1>
while k <= m
    if f(c) == 0
        c = c;
    return;
    elseif f(a) * f(c) < 0
        b = (a + b) / 2;
    else
        a = (a + b) / 2;
    end
    c = (a + b) / 2; k = k + 1;
end
x = c; % 这里加分号是为了不再命令行中输出
k % 不加分号就会在控制台输出
c
end
function y = f(x)
y = x^3 - x -1;
end

运行结果


k =

    27


c =

    1.3247


x =

    1.3247

>> 

本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。


作 者 | 郭志龙
编 辑 | 郭志龙
校 对 | 郭志龙

相关推荐

cvpr 2024|注意力校准用于解缠结的文本到图像个性化

AttentionCalibrationforDisentangledText-to-ImagePersonalization研究背景近年来,大规模文本到图像(T2I)模型取得了显著进展,能...

1080P的显示,4K的享受?NVIDIA DSR游戏实测!

游戏玩家对画质的要求越来越高,因此每到新一代显卡推出的时候,除了游戏性能的提升之外,也会采用提升画质的新技术。NVIDIA最新的Geforce900系列显卡也不例外,一起推出的DSR技术号称可以在1...

「学习OpenCV4」OpenCV线性滤波与非线性滤波总结

本文分享内容来自图书《学习OpenCV4:基于Python的算法实战》,该书内容如下:第1章OpenCV快速入门;第2章图像读写模块imgcodecs;第3章核心库模块core;第4章...

增益映射耦合局部正则化的图像重构算法

朱莉(西安科技大学计算机学院,陕西西安710054)摘要:针对当前的图像重构方法在对多帧超分辨率图像复原时,存在明显的模糊效应与振铃效应的不足,提出增益映射控制耦合局部正则化的图像重构算法。首...

图像处理——5种常见的平滑滤波

平滑滤波是一种简单又常见的图像处理操作。平滑图像的目的有很多,但通常都是为了减少噪声和伪影。在OpenCV中共有5种平滑滤波操作,分别是以下几种:测试代码如下:#include<iostream...

C# 图像处理技术——简单的滤波去噪

在C#中,可以使用System.Drawing命名空间中的类来进行图像处理和滤波去噪操作。以下是一个示例代码,演示如何使用平均滤波器进行简单的去噪处理:usingSystem.Drawing;us...

Java,OpenCV,图像模糊,归一化均值滤波,中值滤波器,高斯模糊

图像模糊图像模糊是图像处理中最简单和常用的操作之一,其主要目的之一是给图像预处理的时候降低图像噪声。图像模糊方法可以总结如下:1、归一化均值滤波器(API为blur())2、高斯滤波器(API为Ga...

带频偏校准的GMSK解调器设计与实现

郑婧怡1,高绍全1,姜汉钧1,张春1,王志华1,2,贾雯2(1.清华大学微电子所,北京100084;2.深圳清华大学研究院,广东深圳518055)摘要:提出了一种在零中频低功耗蓝牙接收机中使用...

图像滤波去噪方法及应用场景

在图像处理中,不同滤波方法针对不同类型的噪声和场景具有特定优势。以下是三种常见滤波器的特点和应用场景总结:1.高斯滤波(GaussianFilter)原理:基于高斯函数的加权平均,对邻域像素进行平...

多体系统动力学仿真软件(DAP)

多体系统动力学仿真软件(DAP)-北京西交智众软件科技有限公司–DAP软件简介DAP(DynamicsAnalysisPlatform)软件,源自西南交通大学沈志云院士带队轨道交通运载系统全国...

精品博文图文详解Xilinx ISE14.7 安装教程

在软件安装之前,得准备好软件安装包,可从Xilinx官网上下载:http://china.xilinx.com/support/download/index.html/content/xilinx/z...

酷睿 Ultra 5 和 Ultra 7,或者i5和i7差距多大?

#我来唠家常#提到ultra,我觉得看这个题目,应该主打轻薄本,或者设计本。分两个问题看:ultra7或者i7的优势,ultra相对老款处理器的优势Ultra7的最大优势是:多了2个大核心,这两个大...

直流-直流(DC-DC)变换电路

直流-直流(DC-DC)变换电路,可以将一种直流电源经过变换电路后输出另一种具有不同输出特性的直流电源,可以是一种固定电压或可调电压的直流电。按照电路拓扑结构的不同,DC-DC变换电路可以分成两种形式...

Energies CL致命错误

期刊基础信息·刊号:ISSN1996-1073·全称:Energies·影响因子:3.2·分区:Q2(能源与燃料类)·版面费:2200瑞士法郎·年发文量:约4500篇CoverLett...

基于心电脉搏信号的无创血压算法研究

洋洋,陈小惠(南京邮电大学自动化学院,江苏南京210023)摘要:针对人体血压无创检测问题,提出了一种基于心电信号(Electrocardiogram,ECG)与光电容积脉搏波(Photople...