百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

MATLAB实例讲解—求二元函数的极值

moboyou 2025-04-26 18:33 8 浏览

实例

程序

clc;
clear all;
close all;
%计算二元函数的极值点 并进行判断
syms x y  %定义二元变量 x y
z = (6*x-x^2)*(4*y-y^2);%定义二元变量函数
f1 = simplify(diff(z,x));%求z对x的一阶偏导
f2 = simplify(diff(z,y));%求z对y的一阶偏导
%求f1 = 0 f2 = 0
% [x1,y1] = solve(y*(2*x - 6)*(y - 4)==0,x*(2*y - 4)*(x - 6)==0,x,y); %求二元函数的驻点(x1,y1)
[x1,y1] = solve(f1==0,f2==0,x,y); %求二元函数的驻点(x1,y1)
x1 = double(x1); %将sym个数转化为double数值格式
y1 = double(y1);%将sym个数转化为double数值格式
n = length(x1);%求长度
%输出驻点个数
fprintf('二元函数z=f(x,y)的驻点个数为n =%d\r\n',n);
%输出驻点坐标
for i = 1:n
    fprintf('二元函数z=f(x,y)的第%d个驻点为(x,y)=(%f,%f)\r\n',i,x1(i),y1(i));
end
%幅值A,B,C为空矩阵
A = [];
B = [];
C = [];
for i = 1:n
    %sub函数用来替换求解函数的具体某点的值和double函数将sym个数转化为double数值格式
    temp = double(subs(diff(z,x,2),[x y],[x1(i) y1(i)])); %计算A
    temp1 = double(subs(diff(f1,y,1),[x y],[x1(i) y1(i)]));%计算B
    temp2 = double(subs(diff(z,y,2),[x y],[x1(i) y1(i)]));%计算C
    A = [A;temp];%存储A的计算结果
    B = [B;temp1];%存储B的计算结果
    C = [C;temp2];%存储C的计算结果
end
%根据AC-B^2结果判断 若(x,y)计算值大于0,则存在极值点,反之不存在若A>0,则为极小值点,A<0,则为极大值点
R = A.*C-B.^2;
%判断
for i = 1:n
    if R(i)>0
        if A(i)>0
            %用subs函数计算极值点处的函数值,然后用double函数将sym格式化成数值格式
            ymax = double(subs(z,[x y],[x1(i) y1(i)]));
            fprintf('二元函数z=f(x,y)的第%d个驻点(x,y)=(%f,%f)为极小值点,极小值为:%f\r\n',i,x1(i),y1(i),ymax);
        else
            ymin = double(subs(z,[x y],[x1(i) y1(i)]));
            fprintf('二元函数z=f(x,y)的第%d个驻点(x,y)=(%f,%f)为极大值点,极大值为:%f\r\n',i,x1(i),y1(i),ymin);
        end
    else
        fprintf('二元函数z=f(x,y)的第%d个驻点(x,y)=(%f,%f)不是极值点\r\n',i,x1(i),y1(i));
    end
end

结果

二元函数z=f(x,y)的驻点个数为n =5
二元函数z=f(x,y)的第1个驻点为(x,y)=(0.000000,0.000000)
二元函数z=f(x,y)的第2个驻点为(x,y)=(0.000000,4.000000)
二元函数z=f(x,y)的第3个驻点为(x,y)=(6.000000,0.000000)
二元函数z=f(x,y)的第4个驻点为(x,y)=(3.000000,2.000000)
二元函数z=f(x,y)的第5个驻点为(x,y)=(6.000000,4.000000)
二元函数z=f(x,y)的第1个驻点(x,y)=(0.000000,0.000000)不是极值点
二元函数z=f(x,y)的第2个驻点(x,y)=(0.000000,4.000000)不是极值点
二元函数z=f(x,y)的第3个驻点(x,y)=(6.000000,0.000000)不是极值点
二元函数z=f(x,y)的第4个驻点(x,y)=(3.000000,2.000000)为极大值点,极大值为:36.000000
二元函数z=f(x,y)的第5个驻点(x,y)=(6.000000,4.000000)不是极值点

1、diff函数

差分和近似导数

语法
Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)
说明
示例
Y = diff(X) 计算沿大小不等于 1 的第一个数组维度的 X 相邻元素之间的差分:
如果 X 是长度为 m 的向量,则 Y = diff(X) 返回长度为 m-1 的向量。Y 的元素是 X 相邻元素之间的差分。
Y = [X(2)-X(1) X(3)-X(2) ... X(m)-X(m-1)]
如果 X 是不为空的非向量 p×m 矩阵,则 Y = diff(X) 返回大小为 (p-1)×m 的矩阵,其元素是 X 的行之间的差分。
Y = [X(2,:)-X(1,:); X(3,:)-X(2,:); ... X(p,:)-X(p-1,:)]

如果 X 是 0×0 的空矩阵,则 Y = diff(X) 返回 0×0 的空矩阵。

X = [1 1 2 3 5 8 13 21];
Y = diff(X)
Y = 1×7

     0     1     1     2     3     5     8

请注意,Y 的元素比 X 少一个。

使用 diff 函数和语法 Y = diff(f)/h 求偏导数近似值,其中 f 是函数值在某些域 X 上计算的向量,h是一个相应的步长大小。

例如,sin(x) 相对于 x 的第一个导数为 cos(x),相对于 x 的第二个导数值为 -sin(x)。可以使用 diff 求这些导数的近似值。

h = 0.001;       % step size
X = -pi:h:pi;    % domain
f = sin(X);      % range
Y = diff(f)/h;   % first derivative
Z = diff(Y)/h;   % second derivative
plot(X(:,1:length(Y)),Y,'r',X,f,'b', X(:,1:length(Z)),Z,'k')

在此绘图中,蓝色线条对应原始函数 sin。红色线条对应计算出的第一个导数 cos,黑色线条对应计算出的第二个导数 -sin。

syms x; 
diff(sin(x^2)) 
ans =
2*x*cos(x^2)
syms x t; 
diff(sin(x*t^2), t) 
ans =
2*t*x*cos(t^2*x)

给定函数f(x)=cosx/(x 3+7x+2)的一阶导数,并将每个点上的值与原函数的值通过matlab函数绘制出来.

一阶导数 syms x; 
f=cos(x)/(x^3+7*x+2); 
f1d=diff(f,x) 
pretty(f1d)

2、solve函数

简单来说,solve函数可以进行以下情况的求解:
(1)等式:单/多变量+线性/非线性 ;(2)不等式
语法
S = solve(eqn,var)example
S = solve(eqn,var,Name,Value)example
Y = solve(eqns,vars)
Y = solve(eqns,vars,Name,Value)example
[y1,...,yN] = solve(eqns,vars)example
[y1,...,yN] = solve(eqns,vars,Name,Value)
[y1,...,yN,parameters,conditions] = solve(eqns,vars,'ReturnConditions',true)example
Description
一些函数
vpa 设置数值的精度(有效数字位数、保留的小数点位数)
subs 符号替换(用数字来替换符号变量)
ezplot 简单地画出函数的图形/曲线(显函数fun(x)、隐函数fun2(x,y)=0)
isAlways 一个判断函数(返回logical 1,表示true)
pretty 漂亮地打印符号表达式(看起来是有分子分母的格式)
举例
1.%% 求解单变量方程
%-----例子1------
syms x
eqn=sin(x)==1;
solve(eqn,x)
%-----例子2------
syms x
eqn=sin(x)==1;
[solx,params,conds]=solve(eqn,x,'ReturnConditions',true)
%-----例子3---------------
%如果返回empty,则表明解不存在。如果返回empty+warning,则解可能存在,但是solve找不到
syms x
solve(3*x+2,3*x+1,x)
2.%% 求解多变量方程
%---例1-----------------
%为了避免求解方程时对符号参数产生混乱,需要指明一个等式中需要求解的变量。
%如果不指明的话,solve函数就会通过symvar选择一个变量(认为该变量是要求解的变量)
clc,clear
syms a b c x
sola=solve(a*x^2+b*x+c==0,a) %待求解的变量是a
sol=solve(a*x^2+b*x+c==0) %待求解的变量是x

3、subs函数

matlab中subs()是符号计算函数,表示将符号表达式中的某些符号变量替换为指定的新的变量,常用调用方式为:
subs(S,OLD,NEW) 表示将符号表达式S中的符号变量OLD替换为新的值NEW。
下面具体演示4种不同形式的OLD和NEW的调用效果:
首先在matlab命令窗口输入如下代码,定义三个符号变量和一个符号表达式S
1、将变量x替换为数值1:subs(S,x,1)
2、将变量x替换为变量z:subs(S,x,z)
3、同时将变量x和y分别替换为1和z:subs(S,{x,y},{1,z})
4、将单变量替换为数组:subs(S,x,[1 2;3 4])
首先是调用格式:
R = subs(S)
R = subs(S, new)
R = subs(S, old, new)
其中S为符号表达式,默认的是变量x!

下面看几个例子,相信大家就是使用了!

例1:

>> syms x;
>> f=x^2;
>> subs(f,2)
ans =

4

例2:将表达式x^2+y^2中x取值为2

>> syms x y;
>> f=x^2+y^2;
>> subs(f,x,2)
ans =

y^2 + 4

例3:

>> syms x y;
>> f=x^2+y^2;
>> subs(f,findsym(f),2)
ans =

y^2 + 4

其中findsym(f)为查找f中所有的符号变量

例4:同时对两个或多个变量取值求解

>> syms a b;
subs(cos(a) + sin(b), {a, b}, {sym('alpha'), 2})
ans =
sin(2) + cos(alpha)

例5:带入数据的值也可以是数组形式

>> syms t a;
>> subs(exp(a*t), 'a', -magic(2))
ans =

[ 1/exp(t), 1/exp(3*t)]
[ 1/exp(4*t), 1/exp(2*t)]

4、符号表达式化简函数

语法:命令(符号表达式)
1. pretty(f)将符号表达式f化简成语高等代数课本上显示符号表示类似;
2. collect(f)合并符号表达式的同类项;
3. hornet(f)将一般的符号表达式转换成嵌套形式的符号表达式;
4. factor(f)对符号表达式进行因式分解;
5. expand(f)对表达式进行展开;
6. simplify(f)对符号表达式进行化简,利用各种类型的恒等式,包括求和,求积分,三角函数以及Bessel函数等简化符号表达式.
7. simple(f)对符号表达式尝试各种不同的算法进行化简,以显示长度最短的符号表达式简化形式;
8. [r,how]=simple(f)返回的r为符号表达式进行化简后的形式,how为采用的简化方法

本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。


作 者 | 郭志龙

编 辑 | 郭志龙
校 对 | 郭志龙

相关推荐

黄道十二宫杀手密码51年后被破解,来自两位程序员和数学家合作

杨净边策发自凹非寺量子位报道|公众号QbitAI黄道十二宫杀手(ZodiacKiller)可能是世界上最知名的高智商连环杀手,52年来从未被抓获。他的事迹已被改编成了多部好莱坞电影。△...

深入剖析MediaCodec解码器的基本原理及使用「建议新手收藏」

一,MediaCodec工作原理MediaCodec类Android提供的用于访问低层多媒体编/解码器接口,它是Android低层多媒体架构的一部分,通常与MediaExtractor、MediaMu...

Retrofit WebService 实践

前言作为Android开发,平时和后端聊得最多的除了喝酒就是接口。常用语:Restful和WebService,前者现在聊得多,后者以前聊得多。默认含义分别为:Restful:HTTP协议...

建议收藏!175部4K UHD版本经典高分电影洗版参考目录(2015之前)

本内容来源于@什么值得买APP,观点仅代表作者本人|作者:1L789近两年很多经典高分老电影陆续开始重制成4KUHD版本,虽然我早已将这些电影的BD蓝光版收入,但纠结一番后还是花了不少时间将其全部...

2 个月的面试亲身经历告诉大家,如何进入 BAT 等大厂?

这篇文章主要是从项目来讲的,所以,从以下几个方面展开。怎么介绍项目?怎么介绍项目难点与亮点?你负责的模块?怎么让面试官满意?怎么介绍项目?我在刚刚开始面试的时候,也遇到了这个问题,也是我第一个思考的问...

详解Android官推Kotlin-First的图片加载库

前言Coil是一个非常年轻的图片加载库,在2020年10月22日才发布了1.0.0版本,但却受到了Android官方的推广,在AndroidDevelopersBackst...

webview 渲染机制:硬件加速方式渲染的Android Web

webview渲染是什么?webview渲染是用于展现web页面的控件;webview可以内嵌在移动端,实现前端的混合式开发,大多数混合式开发框架都是基于webview模式进行二次开发的w...

因为我对Handler的了解,居然直接给我加了5K

1Handler是什么?android提供的线程切换工具类。主要的作用是通过handler实现从子线程切换回主线程进行ui刷新操作。1.1为什么Handler能实现线程切换?在创建Handler的...

「经典总结」一个View,从无到有会走的三个流程,你知道吗?

前言一个View,从无到有会走三个流程,也就是老生常谈的measure,layout,draw三流程我们都知道Android视图是由一层一层构成的层级结构,直白点说,就是父View包含子View而子V...

这些垃圾代码是谁写的?哦,原来小丑竟是我自己

程序员是最喜欢自嘲、自黑的群体之一,比如他们常常称自己是“码农”、“程序猿”,再比如他们的工作明明是写代码、修Bug,也有人调侃说:“明明我们是修代码、写Bug!”本文整理了一些程序员“修代码、写...

手把手教你爬取天堂网1920*1080大图片(批量下载)——理论篇

/1前言/平时我们要下载图片,要要一个一个点击下载是不是觉得很麻烦?那有没有更加简便的方法呢?答案是肯定的,这里我们以天堂网为例,批量下载天堂网的图片。/2项目准备工作/首先我们第一步我们要安装...

音视频开发需要你懂得 ffmpeg 开源库的编码原理

引言音视频开发需要你懂得音视频中一些基本概念,针对编解码而言,我们必须提前懂得编解码器的一些特性,码流的结构,码流中一些重要信息如sps,pps,vps,startcode以及基本的工作原理,...

「8年老 Android 开发」最全最新 Android 面试题系列全家桶(带答案)

下面跟大家分享的这些面试题都是互联网大厂真实流出的面试内容,每个问题都附带完整详细的答案,不像网上的那些资料三教九流有的甚至还没答案,这些面试题我也是经过日积月累才整理出来的精品资料。这些面试题主要是...

手把手教你爬取天堂网1920*1080大图片(批量下载)——实战篇

/1前言/上篇文章手把手教你爬取天堂网1920*1080大图片(批量下载)——理论篇我们谈及了天堂网站图片抓取的理论,这篇文章将针对上篇文章的未尽事宜进行完善,完成图片的批量抓取。/2图片网址解...

PHP 8.1.9 更新发布

CLI:修复了内置服务器通过PHP_CLI_server_WORKERS环境变量的潜在溢出。修正了GH-8952(不再可能有意关闭std句柄)。Core:修复了GH-8923的错误(Windows上的...