优化算法matlab大杀器 —— 实现秃鹰算法
moboyou 2025-05-02 18:14 13 浏览
注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。
.代码实现
文件 | 名描述 |
..\optimization algorithm\frame\Unit.m | 个体 |
..\optimization algorithm\frame\Algorithm_Impl.m | 算法主体 |
文件名 | 描述 |
..\optimization algorithm\frame\Get_Functions_details.m | 测试函数,求值用 |
..\optimization algorithm\frame\func_plot.m | 函数图像,画图用 |
秃鹰算法的个体没有独有属性。
秃鹰算法个体
文件名:.. \optimization algorithm\
algorithm_bald_eagle_search\BES_Unit.m
% 秃鹰算法个体
classdef BES_Unit < Unit
properties
end
methods
function self = BES_Unit()
end
end
end
秃鹰算法算法主体
文件名:..\optimization algorithm\
algorithm_bald_eagle_search\BES_Base.m
% 秃鹰算法
classdef BES_Base < Algorithm_Impl
properties
% 算法名称
name = 'BES';
c1 = 2;
c2 = 2;
alpha = 2;
a = 10;
R = 1.5;
end
% 外部可调用的方法
methods
function self = BES_Base(dim,size,iter_max,range_min_list,range_max_list)
% 调用父类构造函数
self@Algorithm_Impl(dim,size,iter_max,range_min_list,range_max_list);
self.name ='BES';
end
end
% 继承重写父类的方法
methods (Access = protected)
% 初始化种群
function init(self)
init@Algorithm_Impl(self)
%初始化种群
for i = 1:self.size
unit = BES_Unit();
% 随机初始化位置:rand(0,1).*(max-min)+min
unit.position = unifrnd(self.range_min_list,self.range_max_list);
% 计算适应度值
unit.value = self.cal_fitfunction(unit.position);
% 将个体加入群体数组
self.unit_list = [self.unit_list,unit];
end
end
% 每一代的更新
function update(self,iter)
update@Algorithm_Impl(self,iter)
% 选择搜索区域
self.select_space();
%搜索
self.search_in_space();
%俯冲
self.swoop();
end
% 选择搜索的区域
function select_space(self)
% 计算群体的平均位置
pos_mean = self.get_mean_pos();
% 遍历每一个个体
for i = 1:self.size
% 计算新位置
new_pos = self.position_best + self.alpha*unifrnd(0,1,1,self.dim).*(pos_mean-self.unit_list(i).position);
% 越界检查
new_pos = self.get_out_bound_value(new_pos);
new_value = self.cal_fitfunction(new_pos);
% 贪心一下
if new_value > self.unit_list(i).value
% 更新个体
self.unit_list(i).value = new_value;
self.unit_list(i).position = new_pos;
if new_value > self.value_best
% 更新全局最优
self.value_best = new_value;
self.position_best = new_pos;
end
end
end
end
% 在区域内搜索
function search_in_space(self)
% 计算群体的平均位置
pos_mean = self.get_mean_pos();
% 生成随机theta和r向量,向量长度为总群个数,即一个个体一个值
theta = self.a*pi*unifrnd(0,1,1,self.size);
r = theta + self.R*unifrnd(0,1,1,self.size);
xr = get_xr(theta,r);
yr = get_yr(theta,r);
% 获取xr,yr中的最大绝对值
xr_max = max(abs(xr));
yr_max = max(abs(yr));
% 遍历每一个个体
for i = 1:self.size
% 第一下一个个体,即最后一个的下一个是第一个
if i == self.size
next_pos = self.unit_list(1).position;
else
next_pos = self.unit_list(i+1).position;
end
% 计算新位置
new_pos = self.unit_list(i).position + xr(i)/xr_max.*(self.unit_list(i).position-pos_mean)+ yr(i)/yr_max.*(self.unit_list(i).position-next_pos) ;
% 越界检查
new_pos = self.get_out_bound_value(new_pos);
new_value = self.cal_fitfunction(new_pos);
% 贪心一下
if new_value > self.unit_list(i).value
% 更新个体
self.unit_list(i).value = new_value;
self.unit_list(i).position = new_pos;
if new_value > self.value_best
% 更新全局最优
self.value_best = new_value;
self.position_best = new_pos;
end
end
end
end
%俯冲
function swoop(self)
% 计算群体的平均位置
pos_mean = self.get_mean_pos();
% 生成随机theta和r向量,向量长度为总群个数,即一个个体一个值
theta = self.a*pi*unifrnd(0,1,1,self.size);
r = theta + self.R*unifrnd(0,1,1,self.size);
xrl = get_xrl(theta,r);
yrl = get_yrl(theta,r);
% 获取xrl,yrl中的最大绝对值
xrl_max = max(abs(xrl));
yrl_max = max(abs(yrl));
% 遍历每一个个体
for i = 1:self.size
% 计算新位置
new_pos = self.position_best.*unifrnd(0,1,1,self.dim) + xrl(i)/xrl_max.*(self.unit_list(i).position-self.c1*pos_mean)+ yrl(i)/yrl_max.*(self.unit_list(i).position-self.c2*self.position_best) ;
% 越界检查
new_pos = self.get_out_bound_value(new_pos);
new_value = self.cal_fitfunction(new_pos);
% 贪心一下
if new_value > self.unit_list(i).value
% 更新个体
self.unit_list(i).value = new_value;
self.unit_list(i).position = new_pos;
if new_value > self.value_best
% 更新全局最优
self.value_best = new_value;
self.position_best = new_pos;
end
end
end
end
% 获取种群平均位置
function pos_mean = get_mean_pos(self)
pos_mean = zeros(1,self.dim);
for i=1:self.size
pos_mean = pos_mean + self.unit_list(i).position/self.size;
end
end
% 获取当前最优个体的id
function best_id=get_best_id(self)
% 求最大值则降序排列
[value,index] = sort([self.unit_list.value],'descend');
best_id = index(1);
end
end
end
function xr = get_xr(theta,r)
xr = r.*sin(theta);
end
function yr = get_yr(theta,r)
yr = r.*cos(theta);
end
function xrl = get_xrl(theta,r)
xrl = r.*sinh(theta);
end
function yrl = get_yrl(theta,r)
yrl = r.*cosh(theta);
end
文件名:..\optimization algorithm\
algorithm_bald_eagle_search\BES_Impl.m
算法实现,继承于Base,图方便也可不写,直接用BES_Base,这里为了命名一致。
% 秃鹰算法实现
classdef BES_Impl < BES_Base
% 外部可调用的方法
methods
function self = BES_Impl(dim,size,iter_max,range_min_list,range_max_list)
% 调用父类构造函数设置参数
self@BES_Base(dim,size,iter_max,range_min_list,range_max_list);
end
end
end
2.测试
测试F1
文件名:..\optimization algorithm\
algorithm_bald_eagle_search\Test.m
%% 清理之前的数据
% 清除所有数据
clear all;
% 清除窗口输出
clc;
%% 添加目录
% 将上级目录中的frame文件夹加入路径
addpath('../frame')
%% 选择测试函数
Function_name='F1';
%[最小值,最大值,维度,测试函数]
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
%% 算法实例
% 种群数量
size = 50;
% 最大迭代次数
iter_max = 300;
% 取值范围上界
range_max_list = ones(1,dim).*ub;
% 取值范围下界
range_min_list = ones(1,dim).*lb;
% 实例化秃鹰算法类
base = BES_Impl(dim,size,iter_max,range_min_list,range_max_list);
base.is_cal_max = false;
% 确定适应度函数
base.fitfunction = fobj;
% 运行
base.run();
disp(base.cal_fit_num);
%% 绘制图像
figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
% 绘制曲线,由于算法是求最大值,适应度函数为求最小值,故乘了-1,此时去掉-1
semilogy((base.value_best_history),'Color','r')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
% 将坐标轴调整为紧凑型
axis tight
% 添加网格
grid on
% 四边都显示刻度
box off
legend(base.name)
display(['The best solution obtained by ',base.name ,' is ', num2str(base.value_best)]);
display(['The best optimal value of the objective funciton found by ',base.name ,' is ', num2str(base.position_best)]);
相关推荐
- 【开源推荐】给大家推荐个基于ChatGPT的PHP开发库 openai-php-api
-
有了这个库大家就可以愉快的使用PHP对接chatGPT的官方接口了,至于对接了官方接口想要做什么就看你自己的啦环境要求PHP7.4或以上composer1.6.5以上支持框架Laravel、Sym...
- PHP使用Phar打包控制台程序
-
1.介绍1.1介绍php脚本有着非常强大的库支持,可以轻松做出特别强大的程序。php不仅仅可以搭建各种各样的网站系统、平台系统,还可以开发基于控制台运行的程序。不过使用php开发的控制台程序在使用...
- PHP实现URL编码、Base64编码、MD5编码的方法
-
1.介绍1.1介绍今天开始福哥要给大家讲解关于字符编码的知识,所谓字符编码就是将一个字符串或者是一个二进制字节数组里面的每一个字符根据一定的规则替换成一个或者多个其他字符的过程。字符编码的意义有很...
- 雷卯针对易百纳海思Hi3521D开发板防雷防静电方案
-
一、应用场景1、医疗电子2、安防监控3、数字标牌4、视频广告5、环境监测二、功能概述1CPU:ARMCortexA7双核@Max.1.3GHz2H.265/H.264&JPEG多码流编...
- 不折腾无人生-安卓盒子安装Linux系统armbian纪实
-
不折腾无人生-安卓盒子安装Linux系统armbian纪实小编的x96max+(晶晨Amlogics905x3)安卓盒子已安装二个系统,原装安卓9.0和tf卡上的CoreELEC9.2.3,可玩性...
- 全网最简单的玩客云刷casaos方法及后续使用心得
-
本内容来源于@什么值得买APP,观点仅代表作者本人|作者:不鸣de前几天在站内看见很多值友分享了玩客云刷casaos,被简洁的操作界面种草,于是我将之前刷了powersee大神网页导航版armbia...
- 最新评测:英特尔旗舰 Alder Lake 处理器击败苹果M1 Max
-
据国外媒体tomshardware报道,英特尔最新的酷睿i9-12900HK处理器刚刚赢得了移动x86与Arm的性能大战,但这是有代价的。这款移动14核AlderLake芯片在多个工作负...
- 创维酷开Max系列电视开启ADB并安装第三方应用教程
-
前言创维酷开系列智能电视采用的是相对封闭的系统,虽然设置中提供了安装未知应用的选项,但由于电视安装位置的限制,往往难以直接使用USB接口安装应用。本文将详细介绍如何通过ADB方式在创维酷开Max系列电...
- 苹果 Mac Studio,再次刷新我们对个人电脑的认知
-
由两块M1Max组成的M1Ultra,成为了M1系列的最后一块拼图,并完成了整个M1SoC宇宙。这就好像《复仇者联盟4:终局之战》对于漫威第一阶段,十几年勤恳的布局,最终达到顶峰...
- 「必买」盘点2021年男人们的败家清单,越“败”越香
-
心里总想买点啥?看看《必买》,全网最有料的场景种草指南。草原割不尽,春风吹又生。在过去的2021年,不断被各种数码产品种草,一直在买买买,剁手不停。大部分产品都经过详细的对比做足了功课,也有部分是一时...
- Opus音频编解码在arm上的移植
-
一、简介现在有个需求,在局域网内实现实时语音,传输层协议使用UDP协议,如果直接使用ALSA进行录制音频流并发送到另一端进行播放,音质会非常差,而且断断续续,原因如下:采样频率:fm=44.1K...
- N ARM MINI空气减震系统臂体安装指南及应用说明
-
距离MOVMAX移动大师NARMMINI发布已经过去一段时间了,不少收到NARMMINI的小伙伴也已经迅速将产品投入到自己的车拍工作中去了。而在实际工作过程中我们也收到了用户的部分疑问和反馈:...
- 搜索引擎中的性能怪兽,Elasticsearch挑战者之Manticore Search
-
ManticoreSearch简介ManticoreSearch是一个使用C++开发的高性能搜索引擎,创建于2017年,其前身是SphinxSearch。ManticoreSe...
- 10个运维拿来就用的 Shell 脚本,用了才知道有多爽
-
1、监控MySQL主从同步状态是否异常脚本#!/bin/bashHOST=localhostUSER=rootPASSWD=123.comIO_SQL_STATUS=$(mysql-h$...
- PHP7.0.0正式版开放下载:速度大提升
-
IT之家讯PHP发布经理AnatolBelski在GitHub发布了PHP7.0.0正式版,该版本在速度提升上面有非常大的进步,比5.6版本提速两倍,已经接近Facebook开发的PHP执行引擎...
- 一周热门
- 最近发表
- 标签列表
-
- curseforge官网网址 (16)
- 外键约束 oracle (36)
- oracle的row number (32)
- 唯一索引 oracle (34)
- oracle in 表变量 (28)
- oracle导出dmp导出 (28)
- oracle两个表 (20)
- oracle 数据库 字符集 (20)
- oracle安装补丁 (19)
- matlab化简多项式 (20)
- 多线程的创建方式 (29)
- 多线程 python (30)
- java多线程并发处理 (32)
- 宏程序代码一览表 (35)
- c++需要学多久 (25)
- c语言编程小知识大全 (17)
- css class选择器用法 (25)
- css样式引入 (30)
- html5和css3新特性 (19)
- css教程文字移动 (33)
- php简单源码 (36)
- php个人中心源码 (25)
- 网站管理平台php源码 (19)
- php小说爬取源码 (23)
- github好玩的php项目 (18)