百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

机器视觉(七):图像特征提取(图像特征提取技术主要提取哪些特征)

moboyou 2025-05-06 13:22 8 浏览

微信公众号:机器视觉知识推荐官 2023-10-27 08:28

区域和轮廓只包含对分割结果的原始描述,在实际应用中我们还需要从区域或轮廓中确定一个或多个特征量。这些确定的特征量被称为特征。

确定特征的过程被称为图像特征提取。


一、概述

1.图像特征的分类

(1)图像的视觉特征

边缘、轮廓、形状、纹理和区域等。

(2)图像的统计特征

灰度直方图特征、矩特征,其中矩特征包括均值、方差、峰度及熵特征等。

(3)图像变换系数特征

傅立叶变换、离散余弦变换、小波变换等。

(4)图像代数特征

矩阵的奇异值

2. 特征提取与特征选择

(1)特征选择

从一组特征中挑选出一些最有效的特征,以达到降低特征空间维数的目的。

(2)特征提取

对原始特征进行变换得到的这些有利于分类、更本质、更少的新特征的过程。

二、兴趣点提取

1.什么是兴趣点

兴趣点是指图像信号在二维空间上发生变化的区域,通常情况下包括拐角点、交点和纹理等显著变化区域。

2.兴趣点标定的方法

(1)基于轮廓线的方法

轮廓线具有曲率变化的特征,可归类为结点,端点等类型。如在图像中寻找脊和谷的方法对兴趣点进行标定。

(2)基于图像强度的方法

信号的自相关函数检测特征点,灰度值的差大于某个门限时即认为该点是兴趣点。

(3)基于参数模型的方法

使用高斯卷积模型对拐角进行识别, 使用最小化方法,使得模板与观测信号最佳匹配。

3.兴趣点的表达方法

(1)尺度不变特征变换(Scale-invariant feature transform,SIFT)

使用了128维的向量对兴趣点特征进行表达,该向量通过Lowe建立的码表形成。该方法可以做到缩放不变、亮度不变的特性。

(2)可控滤波器和梯度不变方法

使用高斯滤波器的方法求图像的梯度,具有长度为13的维数。

(3)区域矩不变特性

通过改变统计矩的组合,适用于图像的多种不变特性的应用。

(4)频域分析法

通过Gabor滤波器来捕捉图像在频率和方向上的细微变化,描述的维度很高。

三、Harris角点算法

1.概述

当滑动窗口处于一个兴趣点发生的地方,无论从哪个方向移动该窗口,都会发生图像强度(灰度值)的剧烈变化。

基于图像灰度的方法通过计算点的曲率及梯度来检测角点,避免了第一类方法存在的缺陷,此类方法主要有Moravec算子、Forstner算子、Harris算子、SUSAN算子等。

2.原理

图像窗口滑动后灰度值变化计算:

小距离窗口滑动近似计算:

首先采用Sobel算子计算出梯度Ix和Iy,再逐点计算其乘积,最后使用高斯窗对该乘积图像的所有像素点进行卷积即可。

3.MATLAB编程实现

img=imread('F:\lena.png');
imshow(img);
img = rgb2gray(img);        %转换为灰度图像
img =double(img);
[m n]=size(img);                %获取图像尺寸
tmp=zeros(m+2,n+2);        %创建空矩阵tmp
tmp(2:m+1,2:n+1)=img;    %将img赋值给tmp矩阵
Ix=zeros(m+2,n+2);
Iy=zeros(m+2,n+2);
E=zeros(m+2,n+2);             %创建空矩阵Ix,Iy,E
Ix(:,2:n)=tmp(:,3:n+1)-tmp(:,1:n-1);    %求横向梯度Iy(2:m,:)=tmp(3:m+1,:)-tmp(1:m-1,:); %求纵向梯度
 
Ix2=Ix(2:m+1,2:n+1).^2;                   %求梯度方向乘积
Iy2=Iy(2:m+1,2:n+1).^2;
Ixy=Ix(2:m+1,2:n+1).*Iy(2:m+1,2:n+1);  
 
h=fspecial(‘gaussian’,[7 7],2);         %使用高斯核进行加权
Ix2=filter2(h,Ix2);
Iy2=filter2(h,Iy2);
Ixy=filter2(h,Ixy);
Rmax=0;
R=zeros(m,n);
for i=1:m
    for j=1:n
        M=[Ix2(i,j) Ixy(i,j);Ixy(i,j) Iy2(i,j)];
        R(i,j)=det(M)-0.06*(trace(M))^2;              %计算角点量
 
        if R(i,j)>Rmax
            Rmax=R(i,j);                                   %阈值判断
        end
    end
end      
re=zeros(m+2,n+2);
tmp(2:m+1,2:n+1)=R;
img_re=zeros(m+2,n+2);
img_re(2:m+1,2:n+1)=img;
for i=2:m+1
    for j=2:n+1
        if tmp(i,j)>0.02*Rmax &&...
           tmp(i,j)>tmp(i-1,j-1) && tmp(i,j)>tmp(i-1,j) && tmp(i,j)>tmp(i-1,j+1) &&...
           tmp(i,j)>tmp(i,j-1) && tmp(i,j)>tmp(i,j+1) &&...
           tmp(i,j)>tmp(i+1,j-1) && tmp(i,j)>tmp(i+1,j) && tmp(i,j)>tmp(i+1,j+1)
                img_re(i,j)=255;                             %标记角点              
        end   
    end
end
img_re=mat2gray(img_re(2:m+1,2:n+1));
figure,imshow(img_re);     %恢复并显示图像

四、直线提取

1.Hough变换原理

在图像空间XY里,设所有过点(x,y)的直线都满足方程:

式中,p为直线的斜率,q为直线的截距。也可以写成:

式中表示参数空间PQ中过点(p,q)的一条直线。图像空间到参数空间之间的转换可以用图表示:

2.直线提取原理

开始时,置数组A为零,然后对每一个图像空间中的给定点,让θ取遍区间上所有可能的值,并根据直线公式算出对应的ρ,再根据和的值(设都已经取整)对A累加:

对图像遍历后,上式的值就是在点(θ,ρ)处共线点的个数。值(θ,ρ)也给出了直线方程的参数,这样就得到了点所在的线。

3.MATLAB编程实现

img = imread(rg.bmp');
figure(1),subplot(1,2,1);
imshow(img);  title('原始图像');
img=rgb2gray(img);       % 灰度图像subplot(1,2,2);imshow(img);  title('灰度图像'); thresh=[0.01,0.10];         %敏感度阈值
sigma=3;                         %定义高斯参数 
 
f = edge(double(img),'canny',thresh,sigma);  %边缘检测
figure(2),
imshow(f);  
title('canny 边缘检测'); 
% 检测函数;
[H, theta, rho]= hough(f,'Theta', 20:0.1:75);     %0-1
% H->累计数组 , thetaH:对应的θ,实际上H的大小就是Rho×Theta
% Rho:H对应的ρ
 
peak=houghpeaks(H,1);                    %峰值提取
hold on  %保留当前的图和特定的坐标轴属性,以便后续的绘图命令添加到现有的图表。
lines=houghlines(f,theta,rho,peak);   %得到线段信息
 
figure(3);imshow(f,[]);
title('霍夫变换检测结果');
hold on  ;
for k=1:length(lines)     
       xy=[lines(k).point1;lines(k).point2];          
       plot(xy(:,1),xy(:,2),'LineWidth',4,'Color',[.6 .6 .6]);  
end  

版权声明:本文为CSDN博主「liutangplease」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:

https://blog.csdn.net/m0_53966219/article/details/128584624

编辑:古月居

声明:部分内容来源于网络,仅供读者学习、交流之目的。文章版权归原作者所有。如有不妥,请联系删除。

相关推荐

声学EI要完稿?十步速写法

【推荐会议】国际声学与振动会议(ICAV)会议号:CFP23112A截稿时间:2025年4月20日召开时间/地点:2025年8月15-17日·新加坡论文集上线:会后3个月提交EiComp...

结构力学!EI会议图表规范秘籍

推荐会议:国际结构与材料工程进展大会(ISME2026)会议编号:EI#73521截稿时间:2026年3月10日召开时间/地点:2026年8月15-17日·德国柏林论文集上线:会后4...

傅里叶级数物理意义的直观理解:利用傅里叶级数逼近方波信号

上篇文章将向大家介绍频谱的概念,对傅里叶级数、傅里叶积分、傅里叶变换进行了数学的推导,并解释了它们各自的物理意义。推导过程见我的上一篇文章:频谱分析——频谱概念(傅里叶变换、级数、积分及物理意义)如下...

通过对航空发动机整机振动进行分析,有何控制方法?

前言针对航空发动机整机振动问题的复杂性和多样性,以整机振动的振源分析为出发点,总结国内外关于转子系统故障、气流激振、轴承故障、齿轮故障和结构局部共振等引起的整机振动的研究情况。结合航空发动机整机结构动...

MATLIB中使用PCA

主成分分析PCA(PrincipalComponentsAnalysis),奇异值分解SVD(Singularvaluedecomposition)是两种常用的降维方法降维致力于解决三类问题:降维...

数据处理|软件:让科研更简单2

书接上回,继续介绍免费的数据处理软件。eGPS一款热图绘制专用软件,热图就是用颜色代表数字,让数据呈现更直观,对比更明显。优点:小巧方便,基本功能齐全,包括数据转换、聚类分析、颜色调整等等缺点:常见的...

电力系统常用的通讯协议及其在Speedgoat系统中的实现

在电力系统中,IEC61850协议、DNP3协议、ModbusTCP广泛应用于远程终端设备(RTU)、智能电子设备(IED)交互以及监控和数据采集(SCADA)系统。一、IEC61850协议IE...

电子工程师的常用仿真软件

不知道从事电子行业的工程师,有没有使用模拟仿真工具,仿真软件网上又有很多,初学者,可能只知道Multisim和Proteus。一般Multisim适合在学习模拟电路和电路分析原理课程时使用,便于理解电...

技术论文|异结构混沌系统的组合同步控制及电路实现

欢迎引用[1]李贤丽,马赛,樊争先,王壮,马文峥,于婷婷.异结构混沌系统的组合同步控制及电路实现[J].自动化与仪器仪表,2022,No.276(10):80-84.DOI:10.14016/j.cn...

现场︱某110KV主变事故过程仿真分析

三峡电力职业学院、河南省电力公司洛阳供电公司的研究人员李莉、任幼逢、徐金雄、王磊,在2016年第6期《电气技术》杂志上撰文,针对某110KV变电站主变差动保护跳闸事故,结合事故相关检测数据,通过MAT...

光伏发电系统篇:单级式并网系统实时仿真

在全球积极推动清洁能源转型的大背景下,光伏发电作为重要的可再生能源利用方式,得到了广泛关注和迅猛发展。目前常用的光伏并网及光伏电站主要拓扑结构有单级式和双级式。相较于传统的多级式系统,单级式光伏发电并...

光伏发电系统篇:三电平并网逆变器实时仿真

一、三电平并网逆变器在能源转型加速的当下,分布式能源接入电网需求大增。三电平并网逆变器凭借低谐波、高功率密度等优势,有效提升电能转换效率,于新能源并网发电中担当关键角色。常见的三电平电路拓扑结构包括二...

自制3.5KW大功率逆变器,很简单,看过这个电路原理就懂了

前言拿下8000元奖金的项目,是什么水平?本项目经过联合湖南科技大学光伏逆变以及电力电子研究生团队共同探讨方案。项目成本:1200元,获得奖金:8000元!参加赛事:立创开源硬件平台_星火计划·外包赛...

圈内分享:电容式加速度计接口电路非线性建模与仿真设计

摘要:非线性是Sigma-Delta(ΣΔ)加速度计系统的关键指标之一。基于一个五阶ΣΔ加速度计结构,分析了其主要的非线性模块,在MATLAB中建立了整体结构的行为级模型,并利用根轨迹法进行了稳...

基于Matlab/Simulink建立一种Thevenin/RC电池模块仿真模型

本文以锂电池数学模型为基础,在Matlab/Simulink的仿真系统中,建立了一种Thevenin/RC电池模块仿真模型,通过实际工况试验,测试精度在允许误差范围内,为电池SOC/SOH研究提供了极...