百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

测量电感的自谐振频率(SRF),并根据测量数据确定寄生电容

moboyou 2025-05-09 07:02 6 浏览

目标

本实验室活动的目标是测量电感的自谐振频率(SRF),并根据测量数据确定寄生电容。

背景知识

与所有非理想电气元器件一样,部件套件中提供的电感并不完美。图1为常见的实际电感简化模型电路图。除了所需的电感L之外,实际元件还会有损耗(建模为串联电阻,在图中以R表示)和并联寄生电容(以C表示)。电阻越小(接近0 Ω),电容越小(接近0 F),电感就越理想。

图1.3元件LRC电感模型。

绕组间电容与自谐振频率

C通常表示电感的匝间分布电容(以及匝间与磁芯之间的电容等)。在特定频率(SRF)下,该匝间电容将与电感L形成并联谐振,使电感变为调谐电路。

3元件LRC模型阻抗与频率

在低于SRF的频率下,模型呈电感性。在高于SRF的频率下,模型呈电容性,在SRF频率下,模型呈电阻性,因为感抗和容抗的大小相等,相位相反,因此相互抵消。

在电感的SRF下,满足以下所有条件:

  • 输入阻抗处于峰值。
  • 输入阻抗的相位角为零,从正值(感性)转变为负值(容性)。
  • 由于相位角为零,因此Q也为零。
  • 有效电感为零,因为负容抗(XC = 1/jωC)刚好抵消了正感抗(XL = jωL)。
  • 2端口插入损耗(S21 dB)达到最大值,对应于频率与S21 dB图中的最小值。
  • 2端口相位(S21角)为零,从较低频率下的负值转变为较高频率下的正值。

公式1表示电感模型电路中SRF与电感和电容的关系。

其中:

L为电感,单位为H

Cp为寄生电容,单位为F

公式1清楚地表明,提高电感或电容会降低测量的SRF值,而降低电感或电容则会提高SRF值。

3元件LRC电感模型的实验室前仿真

图2为3元件LRC电感模型的仿真测试电路。L、R和CP用于对电感进行建模。V1是理想的交流测试电压源,电阻RS表示V1的源电阻。CL和RL是负载元件,其中CL设置为ADALM2000示波器输入通道的典型输入电容。RL可以设置为RS,也可以设置为更高的值,例如示波器通道的1 MΩ输入电阻。

图2.仿真原理图。

在实际构建电感测试电路之前,您应使用图2所示电路进行仿真。

如图3所示,以1 mH电感L为例,我们进行了两次频率扫描仿真,频率范围为10 kHz至10 MHz,其中CP设置为15 pF,R设置为100 mΩ。红色曲线表示RL设置为与RS相同的200 Ω。当电感阻抗达到最大值时,RL处测得的幅度在SRF时急剧下降。蓝色曲线表示RL设置为示波器输入的1 MΩ。同样,当阻抗达到最大值时,我们观察到急剧下降的零点。我们还看到RL的幅度出现明显的尖峰,大约在陷波下方一个倍频程处。当源电阻和负载电阻不匹配时,就会出现这种峰值。

图3.仿真结果:红色曲线RL = 200 Ω,蓝色曲线RL = 1 MΩ。

材料

  • ADALM2000主动学习模块
  • 无焊试验板和跳线套件
  • 一个1 mH电感
  • 其他不同数值的电感
  • 两个200 Ω电阻(可由两个100 Ω电阻串联而成)

说明

在无焊试验板上构建如图4所示的电感测试电路。蓝色方块表示连接ADALM2000 AWG和示波器通道的位置。

图4.电感测试电路。

硬件设置

ADALM2000 AWG输出和示波器通道输入的连接方式如图4蓝色框所示。部件套件中应包含多个不同数值的电感。将电感逐个插入测试电路。

程序步骤

在Scopy窗口打开网络分析仪软件工具。配置扫描范围,起始频率为100 kHz,停止频率为30 MHz。将幅度设置为1 V,偏移设置为0 V,将伯德图的幅度范围设置为–60 dB至+40 dB。将最大相位设置为+180°,最小相位设置为–180。在通道选项中,点击通道1,将其设为参考通道。将步骤数设为100。

对部件套件中的每个电感运行单次扫描。您应该会看到,幅度和相位与频率的关系曲线和仿真结果非常相似。将数据导出到.csv文件,以便采用Excel或MATLAB(R)进行深入分析。

图5.电感测试电路试验板连接

图6.Scopy截图,L = 100 μH,RL = 200 Ω。

图7.Scopy截图,L = 100 μH,RL = 1 MΩ。

问题:

使用SRF公式计算实验装置中使用的电感的匝间寄生电容值。

您可以在学子专区论坛上找到问题答案。

附加实验

若要进一步探索这种谐振现象,请将外部39 pF和/或100 pF电容与电感并联,然后重新测量频率响应。这样就能获得更多的谐振频率数据,同样可以使用谐振公式来计算和确认简化模型中的电感L和CP。

相关推荐

声学EI要完稿?十步速写法

【推荐会议】国际声学与振动会议(ICAV)会议号:CFP23112A截稿时间:2025年4月20日召开时间/地点:2025年8月15-17日·新加坡论文集上线:会后3个月提交EiComp...

结构力学!EI会议图表规范秘籍

推荐会议:国际结构与材料工程进展大会(ISME2026)会议编号:EI#73521截稿时间:2026年3月10日召开时间/地点:2026年8月15-17日·德国柏林论文集上线:会后4...

傅里叶级数物理意义的直观理解:利用傅里叶级数逼近方波信号

上篇文章将向大家介绍频谱的概念,对傅里叶级数、傅里叶积分、傅里叶变换进行了数学的推导,并解释了它们各自的物理意义。推导过程见我的上一篇文章:频谱分析——频谱概念(傅里叶变换、级数、积分及物理意义)如下...

通过对航空发动机整机振动进行分析,有何控制方法?

前言针对航空发动机整机振动问题的复杂性和多样性,以整机振动的振源分析为出发点,总结国内外关于转子系统故障、气流激振、轴承故障、齿轮故障和结构局部共振等引起的整机振动的研究情况。结合航空发动机整机结构动...

MATLIB中使用PCA

主成分分析PCA(PrincipalComponentsAnalysis),奇异值分解SVD(Singularvaluedecomposition)是两种常用的降维方法降维致力于解决三类问题:降维...

数据处理|软件:让科研更简单2

书接上回,继续介绍免费的数据处理软件。eGPS一款热图绘制专用软件,热图就是用颜色代表数字,让数据呈现更直观,对比更明显。优点:小巧方便,基本功能齐全,包括数据转换、聚类分析、颜色调整等等缺点:常见的...

电力系统常用的通讯协议及其在Speedgoat系统中的实现

在电力系统中,IEC61850协议、DNP3协议、ModbusTCP广泛应用于远程终端设备(RTU)、智能电子设备(IED)交互以及监控和数据采集(SCADA)系统。一、IEC61850协议IE...

电子工程师的常用仿真软件

不知道从事电子行业的工程师,有没有使用模拟仿真工具,仿真软件网上又有很多,初学者,可能只知道Multisim和Proteus。一般Multisim适合在学习模拟电路和电路分析原理课程时使用,便于理解电...

技术论文|异结构混沌系统的组合同步控制及电路实现

欢迎引用[1]李贤丽,马赛,樊争先,王壮,马文峥,于婷婷.异结构混沌系统的组合同步控制及电路实现[J].自动化与仪器仪表,2022,No.276(10):80-84.DOI:10.14016/j.cn...

现场︱某110KV主变事故过程仿真分析

三峡电力职业学院、河南省电力公司洛阳供电公司的研究人员李莉、任幼逢、徐金雄、王磊,在2016年第6期《电气技术》杂志上撰文,针对某110KV变电站主变差动保护跳闸事故,结合事故相关检测数据,通过MAT...

光伏发电系统篇:单级式并网系统实时仿真

在全球积极推动清洁能源转型的大背景下,光伏发电作为重要的可再生能源利用方式,得到了广泛关注和迅猛发展。目前常用的光伏并网及光伏电站主要拓扑结构有单级式和双级式。相较于传统的多级式系统,单级式光伏发电并...

光伏发电系统篇:三电平并网逆变器实时仿真

一、三电平并网逆变器在能源转型加速的当下,分布式能源接入电网需求大增。三电平并网逆变器凭借低谐波、高功率密度等优势,有效提升电能转换效率,于新能源并网发电中担当关键角色。常见的三电平电路拓扑结构包括二...

自制3.5KW大功率逆变器,很简单,看过这个电路原理就懂了

前言拿下8000元奖金的项目,是什么水平?本项目经过联合湖南科技大学光伏逆变以及电力电子研究生团队共同探讨方案。项目成本:1200元,获得奖金:8000元!参加赛事:立创开源硬件平台_星火计划·外包赛...

圈内分享:电容式加速度计接口电路非线性建模与仿真设计

摘要:非线性是Sigma-Delta(ΣΔ)加速度计系统的关键指标之一。基于一个五阶ΣΔ加速度计结构,分析了其主要的非线性模块,在MATLAB中建立了整体结构的行为级模型,并利用根轨迹法进行了稳...

基于Matlab/Simulink建立一种Thevenin/RC电池模块仿真模型

本文以锂电池数学模型为基础,在Matlab/Simulink的仿真系统中,建立了一种Thevenin/RC电池模块仿真模型,通过实际工况试验,测试精度在允许误差范围内,为电池SOC/SOH研究提供了极...