百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

一文扫盲!Python 多线程的正确打开方式

moboyou 2025-06-07 16:55 37 浏览

一、多线程:程序世界的 "多面手"

(一)啥是多线程?

咱先打个比方,你去餐厅吃饭,一个服务员同时接待好几桌客人,每桌客人就是一个 "线程",服务员同时处理多桌事务就是 "多线程"。在程序里,多线程就是让程序同时运行多个任务,各个任务之间相互独立又能协同工作。

(二)多线程的超能力

优势

具体表现

效率翻倍

能同时处理多个任务,比如一边下载文件一边显示进度

资源共享

多个线程共享进程的资源,像内存、文件句柄等,减少资源浪费

用户体验佳

让程序更流畅,不会因为一个任务卡住而整个程序动弹不得

(三)啥时候用多线程?

多线程特别适合IO 密集型任务,比如网络请求、文件读写、数据库操作等。这些任务大部分时间都在等待 IO 操作完成,多线程可以让 CPU 在等待的时候去处理其他任务。而对于 CPU 密集型任务,由于 Python 的 GIL(全局解释器锁)限制,多线程可能发挥不了太大作用,这时候可以考虑多进程。

二、Python 多线程初体验:threading 模块来帮忙

Python 自带的threading模块让多线程操作变得简单易懂,咱们来看看怎么用它创建多线程。

(一)创建线程的两种姿势

1. 继承 Thread 类

import threading
import time

class MyThread(threading.Thread):
    def run(self):
        for i in range(3):
            time.sleep(1)
            print(f"线程{self.name}正在运行,第{i+1}次")

if __name__ == "__main__":
    thread = MyThread()
    thread.start()
    thread.join()
    print("主线程结束")

这里我们创建了一个继承自threading.Thread的类,重写了run方法,里面就是线程要执行的任务。start()方法启动线程,join()方法让主线程等待子线程结束。

2. 创建 Thread 对象并传入目标函数

import threading
import time

def task(name, times):
    for i in range(times):
        time.sleep(1)
        print(f"线程{name}正在运行,第{i+1}次")

if __name__ == "__main__":
    thread = threading.Thread(target=task, args=("线程1", 3))
    thread.start()
    thread.join()
    print("主线程结束")

这种方式更简单直接,把要执行的函数作为目标传入Thread对象,args参数传递函数的参数。

(二)线程的常用方法

方法

作用

start()

启动线程,让线程开始执行

join([timeout])

阻塞主线程,等待子线程结束,可选参数指定等待时间

is_alive()

判断线程是否存活

name

获取或设置线程的名称

三、多线程的 "坑":GIL 和线程同步

(一)GIL:Python 多线程的 "紧箍咒"

Python 的 GIL 是一个全局解释器锁,同一时间只有一个线程能执行 Python 字节码。这就导致在 CPU 密集型任务中,多线程并不能真正利用多核 CPU,反而可能因为线程切换带来额外开销。不过在 IO 密集型任务中,由于线程大部分时间都在等待 IO,GIL 的影响就没那么大了。

咱们来做个小实验,看看 GIL 在 CPU 密集型和 IO 密集型任务中的表现。

CPU 密集型任务(计算斐波那契数列)

import threading
import time

def fib(n):
    if n <= 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)

def cpu_task():
    start = time.time()
    fib(35)
    end = time.time()
    print(f"CPU任务耗时:{end - start:.4f}秒")

if __name__ == "__main__":
    start = time.time()
    thread1 = threading.Thread(target=cpu_task)
    thread2 = threading.Thread(target=cpu_task)
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    print(f"两个CPU任务多线程总耗时:{time.time() - start:.4f}秒")

    start = time.time()
    cpu_task()
    cpu_task()
    print(f"两个CPU任务单线程总耗时:{time.time() - start:.4f}秒")

运行结果可能会发现,多线程的耗时并不比单线程少,甚至可能更长,这就是 GIL 的影响。

IO 密集型任务(模拟文件读取)

import threading
import time

def io_task():
    start = time.time()
    time.sleep(2)  # 模拟IO等待
    end = time.time()
    print(f"IO任务耗时:{end - start:.4f}秒")

if __name__ == "__main__":
    start = time.time()
    thread1 = threading.Thread(target=io_task)
    thread2 = threading.Thread(target=io_task)
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    print(f"两个IO任务多线程总耗时:{time.time() - start:.4f}秒")

    start = time.time()
    io_task()
    io_task()
    print(f"两个IO任务单线程总耗时:{time.time() - start:.4f}秒")

这次会看到,多线程的总耗时接近单线程耗时的一半,说明在 IO 密集型任务中,多线程还是很有用的。

(二)线程同步:别让线程 "打架"

当多个线程共享同一资源时,比如全局变量、文件等,如果同时对其进行修改,就可能导致数据不一致。这时候就需要线程同步,常用的工具是锁(Lock)。

import threading

counter = 0
lock = threading.Lock()

def add_task():
    global counter
    for _ in range(1000000):
        # 加锁
        lock.acquire()
        counter += 1
        # 释放锁
        lock.release()

if __name__ == "__main__":
    threads = []
    for i in range(5):
        thread = threading.Thread(target=add_task)
        threads.append(thread)
        thread.start()

    for thread in threads:
        thread.join()

    print(f"最终计数器值:{counter}")

如果不加锁,最终的计数器值可能会小于 5000000,因为多个线程同时修改counter时会出现竞争条件。加上锁之后,就能保证每次只有一个线程修改counter,确保数据的一致性。

四、多线程的正确打开方式

  • 适用场景:优先用于 IO 密集型任务,如网络请求、文件读写等;CPU 密集型任务可考虑多进程或异步编程。
  • GIL 限制:了解 GIL 对多线程的影响,在 CPU 密集型任务中不要对多线程抱有太高期望。
  • 线程同步:涉及共享资源时,一定要使用锁等机制保证线程安全。
  • 简单易用:threading模块足够满足大多数多线程需求,入门简单,功能强大。

#如何快速入门Python# #Python#

相关推荐

python新手学习常见数据类型——数字

Python支持三种不同的数值类型:整型(int)、浮点型(float)、复数(complex)创建数字:a=1b=2.7c=8+4j删除数字:a=1b=2.7c=8+4...

只用一个套路公式,给 Excel 中一列人员设置随机出场顺序

很多同学会觉得Excel单个案例讲解有些碎片化,初学者未必能完全理解和掌握。不少同学都希望有一套完整的图文教学,从最基础的概念开始,一步步由简入繁、从入门到精通,系统化地讲解Excel的各个知...

Excel神技 TIME函数:3秒搞定时间拼接!职场人必学的效率秘籍

你是否经常需要在Excel中手动输入时间,或者从不同单元格拼接时、分、秒?今天我要揭秘一个超实用的Excel函数——TIME函数,它能让你3秒内生成标准时间格式,彻底告别繁琐操作!一、TIME函数基础...

销售算错数被批?97 Excel 数字函数救场,3 步搞定复杂计算

销售部小张被老板当着全部门骂。上季度销售额汇总,他把38652.78算成36852.78,差了1800块。财务对账时发现,整个部门的提成表都得重算。"连个数都算不对,还做什么销售?&...

如何使用Minitab 1分钟生成所需要的SPC数据

打开Minitab,“计算”-“随机数据”-“正太”,因为不好截图,使用的是拍照记录的方式.再要生产的行数中,填写125,可以按照要求,有些客户要求的是100个数据,就可以填写100...

验证码,除了 12306,我还没有服过谁

为了防止暴力注册或爬虫爬取等机器请求,需要验证操作者是人还是机器,便有了验证码这个设计。本文作者主要介绍了如何使用Axure来设计一个动态的图形验证码,一起来学习一下吧。在软件设计中,为了防止暴力...

零基础也能学会的9个Excel函数,小白进阶必备

今天给大家分享一些常用的函数公式,可以有效地解决Excel中办公所需,0基础也可以轻松学会。建议收藏,在需要的时候可以直接套用函数。1、计算排名根据总和,计算学生成绩排名。函数公式=RANK(E2,$...

[office] excel表格数值如何设置_excel表格怎样设置数值

excel表格数值如何设置  因为电子表格应用程序是用来处理数值数据的,所以数值格式可能是工作表中最关键的部分,格式化数值数据的方式由用户决定,但在每个工作簿的工作表之间应使用一致的处理数字的方法。...

Excel最常用的5个函数!会用最后一个才是高手

是不是在处理Excel数据时,面对繁琐的操作烦恼不已?手动操作不仅耗时费力,还容易出错。别担心,表姐这就为你揭秘Excel中几个超实用的函数,让数据处理变得轻松高效!表姐整理了552页《Office从...

新手必会的53个Excel函数_惊呆小伙伴的全套excel函数技能

(新手入门+进阶+新函数)一、新手入门级(24个)1、Sum函数:求和=Sum(区域)2、Average函数:求平均值=Average(区域)3、Count函数:数字个数=Count(区域)4、Cou...

打工人私藏的4个Excel函数秘籍,效率提升3.7%

小伙伴们好啊,今天咱们分享几个常用函数公式的典型应用。合并内容如下图,希望将B列的姓名,按照不同部门合并到一个单元格里。=TEXTJOIN(",",1,IF(A$2:A$15=D2,B...

Excel偷偷更新的8个函数!原来高手都在用这些隐藏技能

领导突然要销售数据,你手忙脚乱筛选到眼花...同事3分钟搞定的报表,你折腾半小时还在填充公式...明明用了VLOOKUP,却总显示#N/A错误...别慌!今天教你的8个动态数组函数,就像给Excel装...

Excel表格随机函数怎么用?讲解三种随机函数在不同场景的应用

excel随机函数,其特点是能够生成一组随机数字,根据不同需求,还能批量生成小数位和整数,及指定行数和列数,或指定区间范围内的数字。这里根据需求,作者设置了三个问题,第1个是随机生成0至1之间的数字...

单纯随机抽样该如何进行?_单纯随机抽样的适用范围及注意事项

在数据分析中,抽样是指从全部数据中选择部分数据进行分析,以发掘更大规模数据集中的有用信息。在收集数据过程中,绝大多数情况下,并不采取普查的方式获取总体中所有样本的数据信息,而是以各类抽样方法抽取其中若...

随机函数在Excel中的应用_随机函数在excel中的应用实例

【分享成果,随喜正能量】职场,如果你没有价值,那么你随时可能被取代;如果你的价值不如别人,那么社会也不会惯你,你将被无情地淘汰掉。不管什么时候,你一定要学会构建自己的价值。每个人都应该思考这个问题:我...