百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

一文扫盲!Python 多线程的正确打开方式

moboyou 2025-06-07 16:55 43 浏览

一、多线程:程序世界的 "多面手"

(一)啥是多线程?

咱先打个比方,你去餐厅吃饭,一个服务员同时接待好几桌客人,每桌客人就是一个 "线程",服务员同时处理多桌事务就是 "多线程"。在程序里,多线程就是让程序同时运行多个任务,各个任务之间相互独立又能协同工作。

(二)多线程的超能力

优势

具体表现

效率翻倍

能同时处理多个任务,比如一边下载文件一边显示进度

资源共享

多个线程共享进程的资源,像内存、文件句柄等,减少资源浪费

用户体验佳

让程序更流畅,不会因为一个任务卡住而整个程序动弹不得

(三)啥时候用多线程?

多线程特别适合IO 密集型任务,比如网络请求、文件读写、数据库操作等。这些任务大部分时间都在等待 IO 操作完成,多线程可以让 CPU 在等待的时候去处理其他任务。而对于 CPU 密集型任务,由于 Python 的 GIL(全局解释器锁)限制,多线程可能发挥不了太大作用,这时候可以考虑多进程。

二、Python 多线程初体验:threading 模块来帮忙

Python 自带的threading模块让多线程操作变得简单易懂,咱们来看看怎么用它创建多线程。

(一)创建线程的两种姿势

1. 继承 Thread 类

import threading
import time

class MyThread(threading.Thread):
    def run(self):
        for i in range(3):
            time.sleep(1)
            print(f"线程{self.name}正在运行,第{i+1}次")

if __name__ == "__main__":
    thread = MyThread()
    thread.start()
    thread.join()
    print("主线程结束")

这里我们创建了一个继承自threading.Thread的类,重写了run方法,里面就是线程要执行的任务。start()方法启动线程,join()方法让主线程等待子线程结束。

2. 创建 Thread 对象并传入目标函数

import threading
import time

def task(name, times):
    for i in range(times):
        time.sleep(1)
        print(f"线程{name}正在运行,第{i+1}次")

if __name__ == "__main__":
    thread = threading.Thread(target=task, args=("线程1", 3))
    thread.start()
    thread.join()
    print("主线程结束")

这种方式更简单直接,把要执行的函数作为目标传入Thread对象,args参数传递函数的参数。

(二)线程的常用方法

方法

作用

start()

启动线程,让线程开始执行

join([timeout])

阻塞主线程,等待子线程结束,可选参数指定等待时间

is_alive()

判断线程是否存活

name

获取或设置线程的名称

三、多线程的 "坑":GIL 和线程同步

(一)GIL:Python 多线程的 "紧箍咒"

Python 的 GIL 是一个全局解释器锁,同一时间只有一个线程能执行 Python 字节码。这就导致在 CPU 密集型任务中,多线程并不能真正利用多核 CPU,反而可能因为线程切换带来额外开销。不过在 IO 密集型任务中,由于线程大部分时间都在等待 IO,GIL 的影响就没那么大了。

咱们来做个小实验,看看 GIL 在 CPU 密集型和 IO 密集型任务中的表现。

CPU 密集型任务(计算斐波那契数列)

import threading
import time

def fib(n):
    if n <= 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)

def cpu_task():
    start = time.time()
    fib(35)
    end = time.time()
    print(f"CPU任务耗时:{end - start:.4f}秒")

if __name__ == "__main__":
    start = time.time()
    thread1 = threading.Thread(target=cpu_task)
    thread2 = threading.Thread(target=cpu_task)
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    print(f"两个CPU任务多线程总耗时:{time.time() - start:.4f}秒")

    start = time.time()
    cpu_task()
    cpu_task()
    print(f"两个CPU任务单线程总耗时:{time.time() - start:.4f}秒")

运行结果可能会发现,多线程的耗时并不比单线程少,甚至可能更长,这就是 GIL 的影响。

IO 密集型任务(模拟文件读取)

import threading
import time

def io_task():
    start = time.time()
    time.sleep(2)  # 模拟IO等待
    end = time.time()
    print(f"IO任务耗时:{end - start:.4f}秒")

if __name__ == "__main__":
    start = time.time()
    thread1 = threading.Thread(target=io_task)
    thread2 = threading.Thread(target=io_task)
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    print(f"两个IO任务多线程总耗时:{time.time() - start:.4f}秒")

    start = time.time()
    io_task()
    io_task()
    print(f"两个IO任务单线程总耗时:{time.time() - start:.4f}秒")

这次会看到,多线程的总耗时接近单线程耗时的一半,说明在 IO 密集型任务中,多线程还是很有用的。

(二)线程同步:别让线程 "打架"

当多个线程共享同一资源时,比如全局变量、文件等,如果同时对其进行修改,就可能导致数据不一致。这时候就需要线程同步,常用的工具是锁(Lock)。

import threading

counter = 0
lock = threading.Lock()

def add_task():
    global counter
    for _ in range(1000000):
        # 加锁
        lock.acquire()
        counter += 1
        # 释放锁
        lock.release()

if __name__ == "__main__":
    threads = []
    for i in range(5):
        thread = threading.Thread(target=add_task)
        threads.append(thread)
        thread.start()

    for thread in threads:
        thread.join()

    print(f"最终计数器值:{counter}")

如果不加锁,最终的计数器值可能会小于 5000000,因为多个线程同时修改counter时会出现竞争条件。加上锁之后,就能保证每次只有一个线程修改counter,确保数据的一致性。

四、多线程的正确打开方式

  • 适用场景:优先用于 IO 密集型任务,如网络请求、文件读写等;CPU 密集型任务可考虑多进程或异步编程。
  • GIL 限制:了解 GIL 对多线程的影响,在 CPU 密集型任务中不要对多线程抱有太高期望。
  • 线程同步:涉及共享资源时,一定要使用锁等机制保证线程安全。
  • 简单易用:threading模块足够满足大多数多线程需求,入门简单,功能强大。

#如何快速入门Python# #Python#

相关推荐

Excel技巧:SHEETSNA函数一键提取所有工作表名称批量生产目录

首先介绍一下此函数:SHEETSNAME函数用于获取工作表的名称,有三个可选参数。语法:=SHEETSNAME([参照区域],[结果方向],[工作表范围])(参照区域,可选。给出参照,只返回参照单元格...

Excel HOUR函数:“小时”提取器_excel+hour函数提取器怎么用

一、函数概述HOUR函数是Excel中用于提取时间值小时部分的日期时间函数,返回0(12:00AM)到23(11:00PM)之间的整数。该函数在时间数据分析、考勤统计、日程安排等场景中应用广泛。语...

Filter+Search信息管理不再难|多条件|模糊查找|Excel函数应用

原创版权所有介绍一个信息管理系统,要求可以实现:多条件、模糊查找,手动输入的内容能去空格。先看效果,如下图动画演示这样的一个效果要怎样实现呢?本文所用函数有Filter和Search。先用filter...

FILTER函数介绍及经典用法12:FILTER+切片器的应用

EXCEL函数技巧:FILTER经典用法12。FILTER+切片器制作筛选按钮。FILTER的函数的经典用法12是用FILTER的函数和切片器制作一个筛选按钮。像左边的原始数据,右边想要制作一...

office办公应用网站推荐_office办公软件大全

以下是针对Office办公应用(Word/Excel/PPT等)的免费学习网站推荐,涵盖官方教程、综合平台及垂直领域资源,适合不同学习需求:一、官方权威资源1.微软Office官方培训...

WPS/Excel职场办公最常用的60个函数大全(含卡片),效率翻倍!

办公最常用的60个函数大全:从入门到精通,效率翻倍!在职场中,WPS/Excel几乎是每个人都离不开的工具,而函数则是其灵魂。掌握常用的函数,不仅能大幅提升工作效率,还能让你在数据处理、报表分析、自动...

收藏|查找神器Xlookup全集|一篇就够|Excel函数|图解教程

原创版权所有全程图解,方便阅读,内容比较多,请先收藏!Xlookup是Vlookup的升级函数,解决了Vlookup的所有缺点,可以完全取代Vlookup,学完本文后你将可以应对所有的查找难题,内容...

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数在电商运营、物流对账等工作中,经常需要统计快递“揽收到签收”的耗时——比如判断某快递公司是否符合“3天内送达”的服务承...

Excel函数公式教程(490个实例详解)

Excel函数公式教程(490个实例详解)管理层的财务人员为什么那么厉害?就是因为他们精通excel技能!财务人员在日常工作中,经常会用到Excel财务函数公式,比如财务报表分析、工资核算、库存管理等...

Excel(WPS表格)Tocol函数应用技巧案例解读,建议收藏备用!

工作中,经常需要从多个单元格区域中提取唯一值,如体育赛事报名信息中提取唯一的参赛者信息等,此时如果复制粘贴然后去重,效率就会很低。如果能合理利用Tocol函数,将会极大地提高工作效率。一、功能及语法结...

Excel中的SCAN函数公式,把计算过程理清,你就会了

Excel新版本里面,除了出现非常好用的xlookup,Filter公式之外,还更新一批自定义函数,可以像写代码一样写公式其中SCAN函数公式,也非常强大,它是一个循环函数,今天来了解这个函数公式的计...

Excel(WPS表格)中多列去重就用Tocol+Unique组合函数,简单高效

在数据的分析和处理中,“去重”一直是绕不开的话题,如果单列去重,可以使用Unique函数完成,如果多列去重,如下图:从数据信息中可以看到,每位参赛者参加了多项运动,如果想知道去重后的参赛者有多少人,该...

Excel(WPS表格)函数Groupby,聚合统计,快速提高效率!

在前期的内容中,我们讲了很多的统计函数,如Sum系列、Average系列、Count系列、Rank系列等等……但如果用一个函数实现类似数据透视表的功能,就必须用Groupby函数,按指定字段进行聚合汇...

Excel新版本,IFS函数公式,太强大了!

我们举一个工作实例,现在需要计算业务员的奖励数据,右边是公司的奖励标准:在新版本的函数公式出来之前,我们需要使用IF函数公式来解决1、IF函数公式IF函数公式由三个参数组成,IF(判断条件,对的时候返...

Excel不用函数公式数据透视表,1秒完成多列项目汇总统计

如何将这里的多组数据进行汇总统计?每组数据当中一列是不同菜品,另一列就是该菜品的销售数量。如何进行汇总统计得到所有的菜品销售数量的求和、技术、平均、最大、最小值等数据?不用函数公式和数据透视表,一秒就...