python之多线程并发
moboyou 2025-06-07 16:56 14 浏览
前言
今天呢笔者想和大家来聊聊python多线程的并发,废话就不多说了咱们直接进入主题哟。
一、线程执行
python的内置模块提供了两个内置模块:thread和threading,thread是源生模块,threading是扩展模块,在thread的基础上进行了封装及改进。所以只需要使用threading这个模块就能完成并发的测试
实例
创建并启动一个单线程
import threading
def myTestFunc():
print("我是一个函数")
t = threading.Thread(target=myTestFunc) # 创建一个线程
t.start() # 启动线程
执行结果
C:\Python36\python.exe D:/MyThreading/myThread.py
我是一个线程函数
Process finished with exit code 0
其实单线程的执行结果和单独执行某一个或者某一组函数结果是一样的,区别只在于用线程的方式执行函数,而线程是可以同时执行多个的,函数是不可以同时执行的。
二、多线程执行
上面介绍了单线程如何使用,多线程只需要通过循环创建多个线程,并循环启动线程执行就可以了
实例
import threading
from datetime import datetime
def thread_func(): # 线程函数
print('我是一个线程函数', datetime.now())
def many_thread():
threads = []
for _ in range(10): # 循环创建10个线程
t = threading.Thread(target=thread_func)
threads.append(t)
for t in threads: # 循环启动10个线程
t.start()
if __name__ == '__main__':
many_thread()
执行结果
C:\Python36\python.exe D:/MyThreading/manythread.py
我是一个线程函数 2022-06-23 16:54:58.205146
我是一个线程函数 2022-06-23 16:54:58.205146
我是一个线程函数 2022-06-23 16:54:58.206159
我是一个线程函数 2022-06-23 16:54:58.206159
我是一个线程函数 2022-06-23 16:54:58.206159
我是一个线程函数 2022-06-23 16:54:58.207139
我是一个线程函数 2022-06-23 16:54:58.207139
我是一个线程函数 2022-06-23 16:54:58.207139
我是一个线程函数 2022-06-23 16:54:58.208150
我是一个线程函数 2022-06-23 16:54:58.208150
Process finished with exit code 0
通过循环创建10个线程,并且执行了10次线程函数,但需要注意的是python的并发并非绝对意义上的同时处理,因为启动线程是通过循环启动的,还是有先后顺序的,通过执行结果的时间可以看出还是有细微的差异,但可以忽略不记。当然如果线程过多就会扩大这种差异。我们启动500个线程看下程序执行时间
实例
import threading
from datetime import datetime
def thread_func(): # 线程函数
print('我是一个线程函数', datetime.now())
def many_thread():
threads = []
for _ in range(500): # 循环创建500个线程
t = threading.Thread(target=thread_func)
threads.append(t)
for t in threads: # 循环启动500个线程
t.start()
if __name__ == '__main__':
start = datetime.today().now()
many_thread()
duration = datetime.today().now() - start
print(duration)
执行结果
0:00:00.111657
Process finished with exit code 0
500个线程共执行了大约0.11秒
那么针对这种问题我们该如何优化呢?我们可以创建25个线程,每个线程执行20次线程函数,这样在启动下一个线程的时候,上一个线程已经在循环执行了,这样就大大减少了并发的时间差异
优化
import threading
from datetime import datetime
def thread_func(): # 线程函数
print('我是一个线程函数', datetime.now())
def execute_func():
for _ in range(20):
thread_func()
def many_thread():
start = datetime.now()
threads = []
for _ in range(25): # 循环创建500个线程
t = threading.Thread(target=execute_func)
threads.append(t)
for t in threads: # 循环启动500个线程
t.start()
duration = datetime.now() - start
print(duration)
if __name__ == '__main__':
many_thread()
输出结果(仅看程序执行间隔)
0:00:00.014959
Process finished with exit code 0
后面的优化执行500次并发一共花了0.014秒。比未优化前的500个并发快了几倍,如果线程函数的执行时间比较长的话,那么这个差异会更加显著,所以大量的并发测试建议使用后者,后者比较接近同时“并发”
三、守护线程
多线程还有一个重要概念就是守护线程。那么在这之前我们需要知道主线程和子线程的区别,之前创建的线程其实都是main()线程的子线程,即先启动主线程main(),然后执行线程函数子线程。
那么什么是守护线程?即当主线程执行完毕之后,所有的子线程也被关闭(无论子线程是否执行完成)。默认不设置的情况下是没有守护线程的,主线程执行完毕后,会等待子线程全部执行完毕,才会关闭结束程序。
但是这样会有一个弊端,当子线程死循环了或者一直处于等待之中,则程序将不会被关闭,被被无限挂起,我们把上述的线程函数改成循环10次, 并睡眠2秒,这样效果会更明显
import threading
from datetime import datetime
import time
def thread_func(): # 线程函数
time.sleep(2)
i = 0
while(i < 11):
print(datetime.now())
i += 1
def many_thread():
threads = []
for _ in range(10): # 循环创建500个线程
t = threading.Thread(target=thread_func)
threads.append(t)
for t in threads: # 循环启动500个线程
t.start()
if __name__ == '__main__':
many_thread()
print("thread end")
执行结果
C:\Python36\python.exe D:/MyThreading/manythread.py
thread end
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
Process finished with exit code 0
根据上述结果可以看到主线程打印了“thread end”之后(主线程结束),子线程还在继续执行,并未随着主线程的结束而结束
下面我们通过 setDaemon方法给子线程添加守护线程,我们把循环改为死循环,再来看看输出结果(注意守护线程要加在start之前)
import threading
from datetime import datetime
def thread_func(): # 线程函数
i = 0
while(1):
print(datetime.now())
i += 1
def many_thread():
threads = []
for _ in range(10): # 循环创建500个线程
t = threading.Thread(target=thread_func)
threads.append(t)
t.setDaemon(True) # 给每个子线程添加守护线程
for t in threads: # 循环启动500个线程
t.start()
if __name__ == '__main__':
many_thread()
print("thread end")
输出结果
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.565529
2022-06-23 19:12:35.565529
2022-06-23 19:12:35.565529
thread end
Process finished with exit code 0
通过结果我们可以发现,主线程关闭之后子线程也会随着关闭,并没有无限的循环下去,这就像程序执行到一半强制关闭执行一样,看似暴力却很有用,如果子线程发送一个请求未收到请求结果,那不可能永远等下去,这时候就需要强制关闭。所以守护线程解决了主线程和子线程关闭的问题。
四、阻塞线程
上面说了守护线程的作用,那么有没有别的方法来解决上述问题呢? 其实是有的,那就是阻塞线程,这种方式更加合理,使用join()方法阻塞线程,让主线程等待子线程执行完成之后再往下执行,再关闭所有子线程,而不是只要主线程结束,不管子线程是否执行完成都终止子线程执行。下面我们给子线程添加上join()(主要join要加到start之后)
import threading
from datetime import datetime
import time
def thread_func(): # 线程函数
time.sleep(1)
i = 0
while(i < 11):
print(datetime.now())
i += 1
def many_thread():
threads = []
for _ in range(10): # 循环创建500个线程
t = threading.Thread(target=thread_func)
threads.append(t)
t.setDaemon(True) # 给每个子线程添加守护线程
for t in threads: # 循环启动500个线程
t.start()
for t in threads:
t.join() # 阻塞线程
if __name__ == '__main__':
many_thread()
print("thread end")
执行结果
程序会一直执行,但是不会打印“thread end”语句,因为子线程并未结束,那么主线程就会一直等待。
疑问:有人会觉得这和什么都不设置是一样的,其实会有一点区别的,从守护线程和线程阻塞的定义就可以看出来,如果什么都没设置,那么主线程会先执行完毕打印后面的“thread end”,而等待子线程执行完毕。两个都设置了,那么主线程会等待子线程执行结束再继续执行。
而对于死循环或者一直等待的情况,我们可以给join设置超时等待,我们设置join的参数为2,那么子线程会告诉主线程让其等待2秒,如果2秒内子线程执行结束主线程就继续往下执行,如果2秒内子线程未结束,主线程也会继续往下执行,执行完成后关闭子线程
import threading
from datetime import datetime
import time
def thread_func(): # 线程函数
time.sleep(1)
i = 0
while(1):
print(datetime.now())
i += 1
def many_thread():
threads = []
for _ in range(10): # 循环创建500个线程
t = threading.Thread(target=thread_func)
threads.append(t)
t.setDaemon(True) # 给每个子线程添加守护线程
for t in threads: # 循环启动500个线程
t.start()
for t in threads:
t.join(2) # 设置子线程超时2秒
if __name__ == '__main__':
many_thread()
print("thread end")
输出结果
你运行程序后会发现,运行了大概2秒的时候,程序会数据“thread end” 然后结束程序执行, 这就是阻塞线程的意义,控制子线程和主线程的执行顺序
总结
最好呢,再次说一下守护线程和阻塞线程的定义
守护线程:子线程会随着主线程的结束而结束,无论子线程是否执行完毕
阻塞线程:主线程会等待子线程的执行结束,才继续执行
最后今天的文章就到这里了哟,喜欢的小伙伴可以点赞收藏评论关注哟。
相关推荐
- python新手学习常见数据类型——数字
-
Python支持三种不同的数值类型:整型(int)、浮点型(float)、复数(complex)创建数字:a=1b=2.7c=8+4j删除数字:a=1b=2.7c=8+4...
- 只用一个套路公式,给 Excel 中一列人员设置随机出场顺序
-
很多同学会觉得Excel单个案例讲解有些碎片化,初学者未必能完全理解和掌握。不少同学都希望有一套完整的图文教学,从最基础的概念开始,一步步由简入繁、从入门到精通,系统化地讲解Excel的各个知...
- Excel神技 TIME函数:3秒搞定时间拼接!职场人必学的效率秘籍
-
你是否经常需要在Excel中手动输入时间,或者从不同单元格拼接时、分、秒?今天我要揭秘一个超实用的Excel函数——TIME函数,它能让你3秒内生成标准时间格式,彻底告别繁琐操作!一、TIME函数基础...
- 销售算错数被批?97 Excel 数字函数救场,3 步搞定复杂计算
-
销售部小张被老板当着全部门骂。上季度销售额汇总,他把38652.78算成36852.78,差了1800块。财务对账时发现,整个部门的提成表都得重算。"连个数都算不对,还做什么销售?&...
- 如何使用Minitab 1分钟生成所需要的SPC数据
-
打开Minitab,“计算”-“随机数据”-“正太”,因为不好截图,使用的是拍照记录的方式.再要生产的行数中,填写125,可以按照要求,有些客户要求的是100个数据,就可以填写100...
- 验证码,除了 12306,我还没有服过谁
-
为了防止暴力注册或爬虫爬取等机器请求,需要验证操作者是人还是机器,便有了验证码这个设计。本文作者主要介绍了如何使用Axure来设计一个动态的图形验证码,一起来学习一下吧。在软件设计中,为了防止暴力...
- 零基础也能学会的9个Excel函数,小白进阶必备
-
今天给大家分享一些常用的函数公式,可以有效地解决Excel中办公所需,0基础也可以轻松学会。建议收藏,在需要的时候可以直接套用函数。1、计算排名根据总和,计算学生成绩排名。函数公式=RANK(E2,$...
- [office] excel表格数值如何设置_excel表格怎样设置数值
-
excel表格数值如何设置 因为电子表格应用程序是用来处理数值数据的,所以数值格式可能是工作表中最关键的部分,格式化数值数据的方式由用户决定,但在每个工作簿的工作表之间应使用一致的处理数字的方法。...
- Excel最常用的5个函数!会用最后一个才是高手
-
是不是在处理Excel数据时,面对繁琐的操作烦恼不已?手动操作不仅耗时费力,还容易出错。别担心,表姐这就为你揭秘Excel中几个超实用的函数,让数据处理变得轻松高效!表姐整理了552页《Office从...
- 新手必会的53个Excel函数_惊呆小伙伴的全套excel函数技能
-
(新手入门+进阶+新函数)一、新手入门级(24个)1、Sum函数:求和=Sum(区域)2、Average函数:求平均值=Average(区域)3、Count函数:数字个数=Count(区域)4、Cou...
- 打工人私藏的4个Excel函数秘籍,效率提升3.7%
-
小伙伴们好啊,今天咱们分享几个常用函数公式的典型应用。合并内容如下图,希望将B列的姓名,按照不同部门合并到一个单元格里。=TEXTJOIN(",",1,IF(A$2:A$15=D2,B...
- Excel偷偷更新的8个函数!原来高手都在用这些隐藏技能
-
领导突然要销售数据,你手忙脚乱筛选到眼花...同事3分钟搞定的报表,你折腾半小时还在填充公式...明明用了VLOOKUP,却总显示#N/A错误...别慌!今天教你的8个动态数组函数,就像给Excel装...
- Excel表格随机函数怎么用?讲解三种随机函数在不同场景的应用
-
excel随机函数,其特点是能够生成一组随机数字,根据不同需求,还能批量生成小数位和整数,及指定行数和列数,或指定区间范围内的数字。这里根据需求,作者设置了三个问题,第1个是随机生成0至1之间的数字...
- 单纯随机抽样该如何进行?_单纯随机抽样的适用范围及注意事项
-
在数据分析中,抽样是指从全部数据中选择部分数据进行分析,以发掘更大规模数据集中的有用信息。在收集数据过程中,绝大多数情况下,并不采取普查的方式获取总体中所有样本的数据信息,而是以各类抽样方法抽取其中若...
- 随机函数在Excel中的应用_随机函数在excel中的应用实例
-
【分享成果,随喜正能量】职场,如果你没有价值,那么你随时可能被取代;如果你的价值不如别人,那么社会也不会惯你,你将被无情地淘汰掉。不管什么时候,你一定要学会构建自己的价值。每个人都应该思考这个问题:我...
- 一周热门
- 最近发表
- 标签列表
-
- 外键约束 oracle (36)
- oracle的row number (32)
- 唯一索引 oracle (34)
- oracle in 表变量 (28)
- oracle导出dmp导出 (28)
- 多线程的创建方式 (29)
- 多线程 python (30)
- java多线程并发处理 (32)
- 宏程序代码一览表 (35)
- c++需要学多久 (25)
- css class选择器用法 (25)
- css样式引入 (30)
- css教程文字移动 (33)
- php简单源码 (36)
- php个人中心源码 (25)
- php小说爬取源码 (23)
- 云电脑app源码 (22)
- html画折线图 (24)
- docker好玩的应用 (28)
- linux有没有pe工具 (34)
- mysql数据库源码 (21)
- php开源万能表单系统源码 (21)
- 可以上传视频的网站源码 (25)
- match函数的功能是 (21)
- 随机函数如何生成小数点数字 (31)