百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

使用python实现人脸检测

moboyou 2025-07-01 19:38 9 浏览

一,准备

dlib库下载: 提取码1111

dlib环境配置

数据集下载

python 3.8

opencv 3.4.11

二,代码

老规矩,先导入包

# 导入包
import numpy as np
import cv2
import dlib
import random#构建随机测试集和训练集
from sklearn.svm import SVC #导入svm
from sklearn.svm import LinearSVC #导入线性svm
from sklearn.pipeline import Pipeline #导入python里的管道
import os
import joblib#保存模型
from sklearn.preprocessing import StandardScaler,PolynomialFeatures #导入多项式回归和标准化
import tqdm

定义文件路径

folder_path='C:/Users/hp/Desktop/genki4k (1)/genki4k/'
label='labels.txt'#标签文件
pic_folder='files/'#图片文件路径

获得默认的人脸检测器和训练好的人脸68特征点检测器

#获得默认的人脸检测器和训练好的人脸68特征点检测器
def get_detector_and_predicyor():
    #使用dlib自带的frontal_face_detector作为我们的特征提取器
    detector = dlib.get_frontal_face_detector()
    """
    功能:人脸检测画框
    参数:PythonFunction和in Classes
    in classes表示采样次数,次数越多获取的人脸的次数越多,但更容易框错
    返回值是矩形的坐标,每个矩形为一个人脸(默认的人脸检测器)
    """
    #返回训练好的人脸68特征点检测器
    predictor = dlib.shape_predictor('D:/dlib/shape_predictor_68_face_landmarks.dat')
    return detector,predictor
#获取检测器
detector,predictor=get_detector_and_predicyor()

定义截取面部的函数

def cut_face(img,detector,predictor):   
    #截取面部
    img_gry=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    rects = detector(img_gry, 0)  
    if len(rects)!=0:
        mouth_x=0
        mouth_y=0
        landmarks = np.matrix([[p.x, p.y] for p in predictor(img,rects[0]).parts()])
        for i in range(47,67):#嘴巴范围
            mouth_x+=landmarks[i][0,0]
            mouth_y+=landmarks[i][0,1]
        mouth_x=int(mouth_x/20)
        mouth_y=int(mouth_y/20)
        #裁剪图片
        img_cut=img_gry[mouth_y-20:mouth_y+20,mouth_x-20:mouth_x+20]
        return img_cut
    else:
        return 0#检测不到人脸返回0

定义提取特征值的函数

#提取特征值
def get_feature(files_train,face,face_feature):
    for i in tqdm.tqdm(range(len(files_train))):
        img=cv2.imread(folder_path+pic_folder+files_train[i])
        cut_img=cut_face(img,detector,predictor)
        if type(cut_img)!=int:
            face.append(True)
            cut_img=cv2.resize(cut_img,(64,64))
            #padding:边界处理的padding
            padding=(8,8)
            winstride=(16,16)
            hogdescrip=hog.compute(cut_img,winstride,padding).reshape((-1,))
            face_feature.append(hogdescrip)
        else:
            face.append(False)#没有检测到脸的
            face_feature.append(0)

定义筛选函数

def filtrate_face(face,face_feature,face_site): #去掉检测不到脸的图片的特征并返回特征数组和相应标签   
    face_features=[]
    #获取标签
    label_flag=[]
    with open(folder_path+label,'r') as f:
        lines=f.read().splitlines()
    #筛选出能检测到脸的,并收集对应的label
    for i in tqdm.tqdm(range(len(face_site))):
        if face[i]:#判断是否检测到脸
            #pop之后要删掉当前元素,后面的元素也要跟着前移,所以每次提取第一位就行了
            face_features.append(face_feature.pop(0))
            label_flag.append(int(lines[face_site[i]][0])) 
        else:
            face_feature.pop(0)
    datax=np.float64(face_features)
    datay=np.array(label_flag)
    return datax,datay

定义多项式SVM

def PolynomialSVC(degree,c=10):#多项式svm
    return Pipeline([
            # 将源数据 映射到 3阶多项式
            ("poly_features", PolynomialFeatures(degree=degree)),
            # 标准化
            ("scaler", StandardScaler()),
            # SVC线性分类器
            ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42,max_iter=10000))
        ])

训练函数

def train(files_train,train_site):#训练
    '''
    files_train:训练文件名的集合
    train_site :训练文件在文件夹里的位置
    '''
    #是否检测到人脸
    train_face=[]
    #人脸的特征数组
    train_feature=[]
    #提取训练集的特征数组
    get_feature(files_train,train_face,train_feature)
    #筛选掉检测不到脸的特征数组
    train_x,train_y=filtrate_face(train_face,train_feature,train_site)
    svc=PolynomialSVC(degree=1)
    svc.fit(train_x,train_y)
    return svc#返回训练好的模型

测试函数

def test(files_test,test_site,svc):#预测,查看结果集
    '''
    files_train:训练文件名的集合
    train_site :训练文件在文件夹里的位置
    '''
    #是否检测到人脸
    test_face=[]
    #人脸的特征数组
    test_feature=[]
    #提取训练集的特征数组
    get_feature(files_test,test_face,test_feature)
    #筛选掉检测不到脸的特征数组
    test_x,test_y=filtrate_face(test_face,test_feature,test_site)
    pre_y=svc.predict(test_x)
    ac_rate=0
    for i in range(len(pre_y)):
        if(pre_y[i]==test_y[i]):
            ac_rate+=1
    ac=ac_rate/len(pre_y)*100
    print("准确率为"+str(ac)+"%")
    return ac

构建HOG特征提取器

#设置hog的参数
winsize=(64,64)
blocksize=(32,32)
blockstride=(16,16)
cellsize=(8,8)
nbin=9
#定义hog
hog=cv2.HOGDescriptor(winsize,blocksize,blockstride,cellsize,nbin)
#获取文件夹里有哪些文件
files=os.listdir(folder_path+pic_folder)

使用10-fold cross validation

ac=float(0)
for j in range(10):
    site=[i for i in range(4000)]
    #训练所用的样本所在的位置
    train_site=random.sample(site,3600)
    #预测所用样本所在的位置
    test_site=[]
    for i in range(len(site)):
        if site[i] not in train_site:
            test_site.append(site[i])
    files_train=[]
    #训练集,占总数的十分之九
    for i in range(len(train_site)):
        files_train.append(files[train_site[i]])
    #测试集
    files_test=[]
    for i in range(len(test_site)):
        files_test.append(files[test_site[i]])
    svc=train(files_train,train_site)
    ac=ac+test(files_test,test_site,svc)
    save_path='C:/Users/hp/Desktop/smile/smiles'+str(j)+'(hog).pkl'
    joblib.dump(svc,save_path)
ac=ac/10
print("平均准确率为"+str(ac)+"%")

检测结果,注意,检测的时间耗时非常长,这边建议去打一把游戏再来看结果

检测公式就是如下

检测函数

def test1(files_test,test_site,svc):#预测,查看结果集
    '''
    files_train:训练文件名的集合
    train_site :训练文件在文件夹里的位置
    '''
    #是否检测到人脸
    test_face=[]
    #人脸的特征数组
    test_feature=[]
    #提取训练集的特征数组
    get_feature(files_test,test_face,test_feature)
    #筛选掉检测不到脸的特征数组
    test_x,test_y=filtrate_face(test_face,test_feature,test_site)
    pre_y=svc.predict(test_x)
    tp=0
    tn=0
    for i in range(len(pre_y)):
        if pre_y[i]==test_y[i] and pre_y[i]==1:
            tp+=1
        elif pre_y[i]==test_y[i] and pre_y[i]==0:
            tn+=1
    f1=2*tp/(tp+len(pre_y)-tn)
    print(f1)

加载刚刚保存本地模型然后调用检测函数

svc7=joblib.load('C:/Users/hp/Desktop/smile/smiles9(hog).pkl')
site=[i for i in range(4000)]
#训练所用的样本所在的位置
train_site=random.sample(site,3600)
#预测所用样本所在的位置
test_site=[]
for i in range(len(site)):
    if site[i] not in train_site:
        test_site.append(site[i])
#测试集
files_test=[]
for i in range(len(test_site)):
    files_test.append(files[test_site[i]])
test1(files_test,test_site,svc7)

下面就是调用模型来检测了,定义一个笑脸检测函数,输入图片直接得到预测结果

def smile_detector(img,svc):
    cut_img=cut_face(img,detector,predictor)
    a=[]
    
    if type(cut_img)!=int:
        cut_img=cv2.resize(cut_img,(64,64))
    #padding:边界处理的padding
        padding=(8,8)
        winstride=(16,16)
        hogdescrip=hog.compute(cut_img,winstride,padding).reshape((-1,))
        a.append(hogdescrip)
        result=svc.predict(a)
        a=np.array(a)
        return result[0]
    else :
        return 2

图片检测

##图片检测
pic_path='C:/Users/hp/Desktop/test.jpg'
img=cv2.imread(pic_path)
result=smile_detector(img,svc7)
if result==1:
    img=cv2.putText(img,'smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
elif result==0:
    img=cv2.putText(img,'no smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
else:
    img=cv2.putText(img,'no face',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
cv2.imshow('video', img)
cv2.waitKey(0)

检测效果

摄像头实时检测并保持,按s键保存刚刚的识别的图片,按esc退出

camera = cv2.VideoCapture(0)#打开摄像头
ok=True
flag=0
# 打开摄像头 参数为输入流,可以为摄像头或视频文件
while ok:
    ok,img = camera.read()
     # 转换成灰度图像
    result=smile_detector(img,svc7)
    if result==1:
        img=cv2.putText(img,'smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
    elif result==0:
        img=cv2.putText(img,'no smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
    else:
        img=cv2.putText(img,'no face',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
    cv2.imshow('video', img)
    k = cv2.waitKey(1)
    if k == 27:    # press 'ESC' to quit
        break
    elif k==115:
        pic_save_path='C:/Users/hp/Desktop/pictures/'+str(flag)+'.jpg'
        flag+=1
        cv2.imwrite(pic_save_path,img)
camera.release()
cv2.destroyAllWindows()

去文件夹查看结果

三,总结

人脸检测和之前做的差别不是很大,都是提取68各特征点,然后再来判断是否露出微笑

相关推荐

Excel技巧:SHEETSNA函数一键提取所有工作表名称批量生产目录

首先介绍一下此函数:SHEETSNAME函数用于获取工作表的名称,有三个可选参数。语法:=SHEETSNAME([参照区域],[结果方向],[工作表范围])(参照区域,可选。给出参照,只返回参照单元格...

Excel HOUR函数:“小时”提取器_excel+hour函数提取器怎么用

一、函数概述HOUR函数是Excel中用于提取时间值小时部分的日期时间函数,返回0(12:00AM)到23(11:00PM)之间的整数。该函数在时间数据分析、考勤统计、日程安排等场景中应用广泛。语...

Filter+Search信息管理不再难|多条件|模糊查找|Excel函数应用

原创版权所有介绍一个信息管理系统,要求可以实现:多条件、模糊查找,手动输入的内容能去空格。先看效果,如下图动画演示这样的一个效果要怎样实现呢?本文所用函数有Filter和Search。先用filter...

FILTER函数介绍及经典用法12:FILTER+切片器的应用

EXCEL函数技巧:FILTER经典用法12。FILTER+切片器制作筛选按钮。FILTER的函数的经典用法12是用FILTER的函数和切片器制作一个筛选按钮。像左边的原始数据,右边想要制作一...

office办公应用网站推荐_office办公软件大全

以下是针对Office办公应用(Word/Excel/PPT等)的免费学习网站推荐,涵盖官方教程、综合平台及垂直领域资源,适合不同学习需求:一、官方权威资源1.微软Office官方培训...

WPS/Excel职场办公最常用的60个函数大全(含卡片),效率翻倍!

办公最常用的60个函数大全:从入门到精通,效率翻倍!在职场中,WPS/Excel几乎是每个人都离不开的工具,而函数则是其灵魂。掌握常用的函数,不仅能大幅提升工作效率,还能让你在数据处理、报表分析、自动...

收藏|查找神器Xlookup全集|一篇就够|Excel函数|图解教程

原创版权所有全程图解,方便阅读,内容比较多,请先收藏!Xlookup是Vlookup的升级函数,解决了Vlookup的所有缺点,可以完全取代Vlookup,学完本文后你将可以应对所有的查找难题,内容...

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数在电商运营、物流对账等工作中,经常需要统计快递“揽收到签收”的耗时——比如判断某快递公司是否符合“3天内送达”的服务承...

Excel函数公式教程(490个实例详解)

Excel函数公式教程(490个实例详解)管理层的财务人员为什么那么厉害?就是因为他们精通excel技能!财务人员在日常工作中,经常会用到Excel财务函数公式,比如财务报表分析、工资核算、库存管理等...

Excel(WPS表格)Tocol函数应用技巧案例解读,建议收藏备用!

工作中,经常需要从多个单元格区域中提取唯一值,如体育赛事报名信息中提取唯一的参赛者信息等,此时如果复制粘贴然后去重,效率就会很低。如果能合理利用Tocol函数,将会极大地提高工作效率。一、功能及语法结...

Excel中的SCAN函数公式,把计算过程理清,你就会了

Excel新版本里面,除了出现非常好用的xlookup,Filter公式之外,还更新一批自定义函数,可以像写代码一样写公式其中SCAN函数公式,也非常强大,它是一个循环函数,今天来了解这个函数公式的计...

Excel(WPS表格)中多列去重就用Tocol+Unique组合函数,简单高效

在数据的分析和处理中,“去重”一直是绕不开的话题,如果单列去重,可以使用Unique函数完成,如果多列去重,如下图:从数据信息中可以看到,每位参赛者参加了多项运动,如果想知道去重后的参赛者有多少人,该...

Excel(WPS表格)函数Groupby,聚合统计,快速提高效率!

在前期的内容中,我们讲了很多的统计函数,如Sum系列、Average系列、Count系列、Rank系列等等……但如果用一个函数实现类似数据透视表的功能,就必须用Groupby函数,按指定字段进行聚合汇...

Excel新版本,IFS函数公式,太强大了!

我们举一个工作实例,现在需要计算业务员的奖励数据,右边是公司的奖励标准:在新版本的函数公式出来之前,我们需要使用IF函数公式来解决1、IF函数公式IF函数公式由三个参数组成,IF(判断条件,对的时候返...

Excel不用函数公式数据透视表,1秒完成多列项目汇总统计

如何将这里的多组数据进行汇总统计?每组数据当中一列是不同菜品,另一列就是该菜品的销售数量。如何进行汇总统计得到所有的菜品销售数量的求和、技术、平均、最大、最小值等数据?不用函数公式和数据透视表,一秒就...