百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python并发编程实用教程_python并发和并行

moboyou 2025-09-11 23:23 5 浏览

#Python知识分享#

一、并发编程基础

1. 并发与并行概念

定义对比

  • 并发:交替执行任务(单核)
  • 并行:同时执行任务(多核)

并发vs并行示意图

并发: [任务A] <-> [任务B] <-> [任务A] <-> [任务B] (时间切片)
并行: [任务A] → 同时执行 ← [任务B] (多核)

表1 Python并发编程方式对比

方式

模块

适用场景

特点

多线程

threading

I/O密集型

共享内存,GIL限制

多进程

multiprocessing

CPU密集型

独立内存,开销大

协程

asyncio

高并发I/O

单线程异步,高效


二、多线程编程

1. Thread类基础

语法定义

from threading import Thread

t = Thread(target=函数, args=(参数,))
t.start()
t.join()

应用示例

import time
from threading import Thread

def download_file(url):
    print(f"开始下载 {url}")
    time.sleep(2)  # 模拟I/O操作
    print(f"完成下载 {url}")

# 创建并启动线程
threads = []
for i in range(3):
    t = Thread(target=download_file, args=(f"https://example.com/file{i}.zip",))
    threads.append(t)
    t.start()

# 等待所有线程完成
for t in threads:
    t.join()

print("所有下载任务完成")

注意事项

  • 线程适合I/O密集型任务
  • 受GIL限制,不适合CPU密集型任务
  • 注意线程安全问题

三、多进程编程

1. Process类使用

语法定义

from multiprocessing import Process

p = Process(target=函数, args=(参数,))
p.start()
p.join()

应用示例

import math
from multiprocessing import Process

def calculate_factorial(n):
    print(f"计算 {n} 的阶乘")
    result = math.factorial(n)
    print(f"{n}! = {result}")

if __name__ == '__main__':
    numbers = [1000, 2000, 3000]
    processes = []

    for num in numbers:
        p = Process(target=calculate_factorial, args=(num,))
        processes.append(p)
        p.start()

    for p in processes:
        p.join()

    print("所有计算完成")

多进程内存模型

进程A ── 独立内存空间
进程B ── 独立内存空间
进程C ── 独立内存空间

四、异步编程(asyncio)

1. 协程基础

语法定义

import asyncio

async def 协程函数():
    await 异步操作

asyncio.run(协程函数())

应用示例

import asyncio

async def fetch_data(url):
    print(f"开始获取 {url}")
    await asyncio.sleep(2)  # 模拟I/O等待
    print(f"完成获取 {url}")
    return f"{url} 的数据"

async def main():
    tasks = [
        fetch_data("https://api.com/data1"),
        fetch_data("https://api.com/data2"),
        fetch_data("https://api.com/data3")
    ]
    results = await asyncio.gather(*tasks)
    print("所有结果:", results)

asyncio.run(main())

表2 同步vs异步I/O对比

特性

同步I/O

异步I/O

线程使用

阻塞线程

单线程处理

性能

低(串行)

高(并发)

复杂度

简单

需要async/await

适用场景

简单逻辑

高并发网络请求


五、线程/进程池

1. ThreadPoolExecutor

语法定义

from concurrent.futures import ThreadPoolExecutor

with ThreadPoolExecutor(max_workers=5) as executor:
    future = executor.submit(函数, 参数)
    result = future.result()

应用示例

from concurrent.futures import ThreadPoolExecutor
import urllib.request

def download(url):
    with urllib.request.urlopen(url) as response:
        return f"{url}: {len(response.read())} bytes"

urls = [
    "https://www.python.org",
    "https://www.google.com",
    "https://www.github.com"
]

with ThreadPoolExecutor(max_workers=3) as executor:
    futures = [executor.submit(download, url) for url in urls]
    for future in futures:
        print(future.result())

2. ProcessPoolExecutor

语法定义

from concurrent.futures import ProcessPoolExecutor

with ProcessPoolExecutor(max_workers=4) as executor:
    future = executor.submit(函数, 参数)
    result = future.result()

应用示例

from concurrent.futures import ProcessPoolExecutor
import math

def compute_factorial(n):
    return math.factorial(n)

numbers = [1000, 2000, 3000, 4000]

with ProcessPoolExecutor() as executor:
    results = executor.map(compute_factorial, numbers)
    for num, result in zip(numbers, results):
        print(f"{num}! 的计算完成")

六、共享数据与同步

1. 线程安全操作

表3 线程同步原语

工具

用途

示例

Lock

互斥锁

with lock:

RLock

可重入锁

with rlock:

Semaphore

信号量

semaphore.acquire()

Queue

线程安全队列

queue.put/get()

应用示例

from threading import Thread, Lock
import time

class BankAccount:
    def __init__(self):
        self.balance = 100
        self.lock = Lock()
    
    def deposit(self, amount):
        with self.lock:
            new_balance = self.balance + amount
            time.sleep(0.1)  # 模拟处理延迟
            self.balance = new_balance

account = BankAccount()
threads = []

for _ in range(10):
    t = Thread(target=account.deposit, args=(10,))
    threads.append(t)
    t.start()

for t in threads:
    t.join()

print(f"最终余额: {account.balance}")  # 正确结果200

七、应用案例

1. 并发Web爬虫示例

import asyncio
import aiohttp
from concurrent.futures import ThreadPoolExecutor

async def fetch_url(session, url):
    async with session.get(url) as response:
        return await response.text()

async def main():
    urls = [
        "https://www.python.org",
        "https://www.google.com",
        "https://www.github.com"
    ]
    
    async with aiohttp.ClientSession() as session:
        tasks = [fetch_url(session, url) for url in urls]
        results = await asyncio.gather(*tasks)
        for url, content in zip(urls, results):
            print(f"{url}: {len(content)} bytes")

asyncio.run(main())

2. 并行数据处理示例

from multiprocessing import Pool
import pandas as pd

def process_chunk(chunk):
    # 模拟耗时数据处理
    return chunk.describe()

if __name__ == '__main__':
    data = pd.DataFrame({'value': range(1000000)})
    chunks = [data[i:i+100000] for i in range(0, len(data), 100000)]
    
    with Pool(4) as pool:
        results = pool.map(process_chunk, chunks)
    
    final_result = pd.concat(results)
    print(final_result)

八、并发编程建议

  1. I/O密集型:使用线程或异步
  2. CPU密集型:使用多进程
  3. 避免共享状态,使用消息传递
  4. 合理设置工作线程/进程数量
  5. 使用连接池管理资源

表4 并发问题

问题

解决方案

竞态条件

使用Lock/RLock

死锁

避免嵌套锁,设置超时

资源耗尽

使用连接池,限制并发数

GIL限制

使用多进程或C扩展

总结

核心知识点

  1. 多线程适合I/O密集型任务(threading)
  2. 多进程适合CPU密集型任务(multiprocessing)
  3. 协程实现高效I/O并发(asyncio)
  4. 线程/进程池简化资源管理(concurrent.futures)

选择指南

I/O密集型 → 多线程/协程
CPU密集型 → 多进程
高并发网络 → 异步编程
批量计算 → 进程池

Python并发编程决策树

开始 → CPU密集型? → 是 → multiprocessing
            ↓否
          I/O高并发? → 是 → asyncio
            ↓否
          threading/concurrent.futures

持续更新Python编程学习日志与技巧,敬请关注!


#编程# #python# #在头条记录我的2025#


相关推荐

Excel技巧:SHEETSNA函数一键提取所有工作表名称批量生产目录

首先介绍一下此函数:SHEETSNAME函数用于获取工作表的名称,有三个可选参数。语法:=SHEETSNAME([参照区域],[结果方向],[工作表范围])(参照区域,可选。给出参照,只返回参照单元格...

Excel HOUR函数:“小时”提取器_excel+hour函数提取器怎么用

一、函数概述HOUR函数是Excel中用于提取时间值小时部分的日期时间函数,返回0(12:00AM)到23(11:00PM)之间的整数。该函数在时间数据分析、考勤统计、日程安排等场景中应用广泛。语...

Filter+Search信息管理不再难|多条件|模糊查找|Excel函数应用

原创版权所有介绍一个信息管理系统,要求可以实现:多条件、模糊查找,手动输入的内容能去空格。先看效果,如下图动画演示这样的一个效果要怎样实现呢?本文所用函数有Filter和Search。先用filter...

FILTER函数介绍及经典用法12:FILTER+切片器的应用

EXCEL函数技巧:FILTER经典用法12。FILTER+切片器制作筛选按钮。FILTER的函数的经典用法12是用FILTER的函数和切片器制作一个筛选按钮。像左边的原始数据,右边想要制作一...

office办公应用网站推荐_office办公软件大全

以下是针对Office办公应用(Word/Excel/PPT等)的免费学习网站推荐,涵盖官方教程、综合平台及垂直领域资源,适合不同学习需求:一、官方权威资源1.微软Office官方培训...

WPS/Excel职场办公最常用的60个函数大全(含卡片),效率翻倍!

办公最常用的60个函数大全:从入门到精通,效率翻倍!在职场中,WPS/Excel几乎是每个人都离不开的工具,而函数则是其灵魂。掌握常用的函数,不仅能大幅提升工作效率,还能让你在数据处理、报表分析、自动...

收藏|查找神器Xlookup全集|一篇就够|Excel函数|图解教程

原创版权所有全程图解,方便阅读,内容比较多,请先收藏!Xlookup是Vlookup的升级函数,解决了Vlookup的所有缺点,可以完全取代Vlookup,学完本文后你将可以应对所有的查找难题,内容...

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数

批量查询快递总耗时?用Excel这个公式,自动计算揽收到签收天数在电商运营、物流对账等工作中,经常需要统计快递“揽收到签收”的耗时——比如判断某快递公司是否符合“3天内送达”的服务承...

Excel函数公式教程(490个实例详解)

Excel函数公式教程(490个实例详解)管理层的财务人员为什么那么厉害?就是因为他们精通excel技能!财务人员在日常工作中,经常会用到Excel财务函数公式,比如财务报表分析、工资核算、库存管理等...

Excel(WPS表格)Tocol函数应用技巧案例解读,建议收藏备用!

工作中,经常需要从多个单元格区域中提取唯一值,如体育赛事报名信息中提取唯一的参赛者信息等,此时如果复制粘贴然后去重,效率就会很低。如果能合理利用Tocol函数,将会极大地提高工作效率。一、功能及语法结...

Excel中的SCAN函数公式,把计算过程理清,你就会了

Excel新版本里面,除了出现非常好用的xlookup,Filter公式之外,还更新一批自定义函数,可以像写代码一样写公式其中SCAN函数公式,也非常强大,它是一个循环函数,今天来了解这个函数公式的计...

Excel(WPS表格)中多列去重就用Tocol+Unique组合函数,简单高效

在数据的分析和处理中,“去重”一直是绕不开的话题,如果单列去重,可以使用Unique函数完成,如果多列去重,如下图:从数据信息中可以看到,每位参赛者参加了多项运动,如果想知道去重后的参赛者有多少人,该...

Excel(WPS表格)函数Groupby,聚合统计,快速提高效率!

在前期的内容中,我们讲了很多的统计函数,如Sum系列、Average系列、Count系列、Rank系列等等……但如果用一个函数实现类似数据透视表的功能,就必须用Groupby函数,按指定字段进行聚合汇...

Excel新版本,IFS函数公式,太强大了!

我们举一个工作实例,现在需要计算业务员的奖励数据,右边是公司的奖励标准:在新版本的函数公式出来之前,我们需要使用IF函数公式来解决1、IF函数公式IF函数公式由三个参数组成,IF(判断条件,对的时候返...

Excel不用函数公式数据透视表,1秒完成多列项目汇总统计

如何将这里的多组数据进行汇总统计?每组数据当中一列是不同菜品,另一列就是该菜品的销售数量。如何进行汇总统计得到所有的菜品销售数量的求和、技术、平均、最大、最小值等数据?不用函数公式和数据透视表,一秒就...