异构跨库数据同步还在用Datax?来看看这几个开源的同步方案
moboyou 2025-03-26 11:42 8 浏览
在遇到跨库或者异库数据同步时,我们一般都会借助ETL工具来实现数据同步功能。比如目前大家较为熟知的Kettle和Datax。但是,这两个需要定时去查询数据库的数据,会存在一定的延迟,而且,默认采用全量同步的方式,想要增量,需要自己做特殊的处理。那么,有没有开源的工具,既能满足全量和增量,又能达到相对比较实时的呢?接下来,我们继续往下看。
Kettle
在ETL行列中,kettle算是人气比较旺的一款工具,功能多且强大,开源,可视化。使用方便、简洁,但是,体量越来越大,性能一般。
可以自己下载源码编译,要求Maven 3+、Java JDK 11。
https://github.com/pentaho/pentaho-kettle.git
DataX
DataX 是阿里云 DataWorks数据集成 的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS, databend 等各种异构数据源之间高效的数据同步功能。
类型 | 数据源 | Reader(读) | Writer(写) | 文档 |
RDBMS 关系型数据库 | MySQL | √ | √ | 读 、写 |
Oracle | √ | √ | 读 、写 | |
OceanBase | √ | √ | 读 、写 | |
SQLServer | √ | √ | 读 、写 | |
PostgreSQL | √ | √ | 读 、写 | |
DRDS | √ | √ | 读 、写 | |
Kingbase | √ | √ | 读 、写 | |
通用RDBMS(支持所有关系型数据库) | √ | √ | 读 、写 | |
阿里云数仓数据存储 | ODPS | √ | √ | 读 、写 |
ADB | √ | 写 | ||
ADS | √ | 写 | ||
OSS | √ | √ | 读 、写 | |
OCS | √ | 写 | ||
Hologres | √ | 写 | ||
AnalyticDB For PostgreSQL | √ | 写 | ||
阿里云中间件 | datahub | √ | √ | 读 、写 |
SLS | √ | √ | 读 、写 | |
阿里云图数据库 | GDB | √ | √ | 读 、写 |
NoSQL数据存储 | OTS | √ | √ | 读 、写 |
Hbase0.94 | √ | √ | 读 、写 | |
Hbase1.1 | √ | √ | 读 、写 | |
Phoenix4.x | √ | √ | 读 、写 | |
Phoenix5.x | √ | √ | 读 、写 | |
MongoDB | √ | √ | 读 、写 | |
Cassandra | √ | √ | 读 、写 | |
数仓数据存储 | StarRocks | √ | √ | 读 、写 |
ApacheDoris | √ | 写 | ||
ClickHouse | √ | 写 | ||
Databend | √ | 写 | ||
Hive | √ | √ | 读 、写 | |
kudu | √ | 写 | ||
无结构化数据存储 | TxtFile | √ | √ | 读 、写 |
FTP | √ | √ | 读 、写 | |
HDFS | √ | √ | 读 、写 | |
Elasticsearch | √ | 写 | ||
时间序列数据库 | OpenTSDB | √ | 读 | |
TSDB | √ | √ | 读 、写 | |
TDengine | √ | √ | 读 、写 |
https://github.com/alibaba/DataX.git
DataX-Web
前面提到DataX,那么就不得不提一下DataX-Web,DataX没有可视化界面,不过目前,已经有热心开基于DataX开发了对应的Web界面。DataX Web是在DataX之上开发的分布式数据同步工具,提供简单易用的 操作界面,降低用户使用DataX的学习成本,缩短任务配置时间,避免配置过程中出错。用户可通过页面选择数据源即可创建数据同步任务,支持RDBMS、Hive、HBase、ClickHouse、MongoDB等数据源,RDBMS数据源可批量创建数据同步任务,支持实时查看数据同步进度及日志并提供终止同步功能,集成并二次开发xxl-job可根据时间、自增主键增量同步数据。
任务”执行器”支持集群部署,支持执行器多节点路由策略选择,支持超时控制、失败重试、失败告警、任务依赖,执行器CPU.内存.负载的监控等等。后续还将提供更多的数据源支持、数据转换UDF、表结构同步、数据同步血缘等更为复杂的业务场景。
https://github.com/WeiYe-Jing/datax-web.git
Airbyte
一款开源的可视化ETL功能,支持很多数据源,并且支持全量及增量同步。
https://github.com/airbytehq/airbyte.git
benthos
Benthos 是一个开源的、高性能和弹性的数据流处理器,支持多种方式的数据接入、加工、转换。
https://github.com/benthosdev/benthos.git
canal
阿里巴巴开源的MySQL binlog 增量订阅&消费组件,基于日志只能做增量同步,很多工作需要自己处理。
https://github.com/alibaba/canal.git
Maxwell
也是监听MySQL binlog,并将数据更解析为JSON写入到Kafka等其他流媒体平台。
https://github.com/zendesk/maxwell.git
debezium
Debezium是一个捕获数据更改(CDC)平台,并且利用Kafka和Kafka Connect实现了自己的持久性、可靠性和容错性。每一个部署在Kafka Connect分布式的、可扩展的、容错性的服务中的connector监控一个上游数据库服务器,捕获所有的数据库更改,然后记录到一个或者多个Kafka topic(通常一个数据库表对应一个kafka topic)。Kafka确保所有这些数据更改事件都能够多副本并且总体上有序(Kafka只能保证一个topic的单个分区内有序),这样,更多的客户端可以独立消费同样的数据更改事件而对上游数据库系统造成的影响降到很小(如果N个应用都直接去监控数据库更改,对数据库的压力为N,而用debezium汇报数据库更改事件到kafka,所有的应用都去消费kafka中的消息,可以把对数据库的压力降到1)。另外,客户端可以随时停止消费,然后重启,从上次停止消费的地方接着消费。每个客户端可以自行决定他们是否需要exactly-once或者at-least-once消息交付语义保证,并且所有的数据库或者表的更改事件是按照上游数据库发生的顺序被交付的。
https://github.com/debezium/debezium.git
Flink CDC
Apache Flink(R)的CDC连接器集成了Debezium作为捕获数据更改的引擎。虽然功能强大,但是比较重。
https://github.com/ververica/flink-cdc-connectors.git
目前,异构数据ETL同步,一般基于两种方式:查询和日志,基于查询做全量同步,基于日志做增量同步,日志方式延迟会比较小,查询来做增量,延迟会比较大,查询频率越高,对数据库性能也会有影响。随着各种热门技术的兴起,在Github中也有越来越多的解决方案,我们可以根据自己的实际情况选择合适自己的工具。
相关推荐
- Python网络爬虫之分析网页
-
一、分析并提取网页内容的有三种方式o正则表达式(速度最快,但适应变化略差)oBeautifulsoup库(速度是正则表达式的约几分之一)oselenium或pyppeteer的中的浏览器对象的查找元素...
- Python进阶-day9:正则表达式
-
目标学习Python的re模块基础用法。掌握正则表达式的匹配(match,search,findall)、替换(sub)和分割(split)操作。练习:编写代码从一段文本中提取所有邮箱地址。学习内...
- Python模块datetime、calendar、logging、argparse、re用法
-
datetime模块:提供日期和时间相关的功能。importdatetime#获取当前日期和时间current_time=datetime.datetime.now()#格式化日期...
- 一文讲清怎么利用Python实现Linux系统日志检索分析管理系统
-
摘要:在现代IT运营与开发中,日志分析早已成为不可或缺的核心环节。无论是排查系统故障、进行安全审计,还是优化服务性能,日志文件始终是最真实、最权威的信息来源。Linux系统作为主流的服务器操作系统,其...
- Python基础编程——标准库之shelve模块
-
在实际开发中,要将数据进行持久化,通常的做法是,将数据保存到文件或者数据库中。Python有多种方法将数据保存到文件中,本节将会介绍使用Python的标准库shelve来将数据保存到文件中。shelv...
- 使用 Python 开发一个 Python 解释器
-
原文地址:https://python.plainenglish.io/introduction-to-creating-interpreter-using-python-c2a9a6820aa0原文...
- 强烈推荐!Python 这个宝藏库 re 正则匹配
-
Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。在文本解析、复杂字符串分析和信息提取时是一个非常有用的工具,下面总结了re模块的常用方...
- python入门到脱坑正则表达式—re.match()函数
-
re.match()是Python正则表达式模块re中的一个重要方法,用于从字符串的起始位置匹配一个模式。下面我将详细介绍它的用法和特点。基本语法re.match(pattern,stri...
- Python中使用re模块实现正则表达式的替换字符串操作
-
#编程语言#我是"学海无涯自学不惜!",关注我,一同学习简单易懂的Python编程。0基础学python(83)Python中,导入re模块后还可以进行字符串的替换操作,就是sub()...
- 深入理解re模块:Python中的正则表达式神器解析
-
在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...
- python入门到脱坑正则表达式—re.search()函数
-
re.search()是Python正则表达式模块re中的核心函数之一,用于在字符串中搜索匹配指定模式的第一个位置。与re.match()不同,它不限制匹配必须从字符串开头开始。基本语法...
- python入门到脱坑正则表达式—re.sub()函数
-
re.sub()是Python正则表达式模块re中用于字符串替换的核心函数,它可以在字符串中搜索匹配正则表达式的部分,并将其替换为指定的内容。基本语法re.sub(pattern,repl...
- python之re模块
-
re模块一.re模块的介绍1.什么是正则表达式"定义:正则表达式是一种对字符和特殊字符操作的一种逻辑公式,从特定的字符中,用正则表达字符来过滤的逻辑。(也是一种文本模式;)2、正则表达式可以...
- Python中re模块详解
-
在《用最简单的方式教会你使用Python正则》一文中,我们介绍了正则表达式该如何书写,还通过简单的示例介绍了Python中如何通过re模块使用正则功能。今天本文将通过以下内容详细介绍r...
- 微信积分商城货到付款系统|裂变营销+物流闭环
-
微信积分商城货到付款系统核心卖点速览零成本运营:免授权+完全开源PHP源码,9MB轻量部署,Mysql数据库高效支撑。灵活支付组合:独创“积分+货到付款+运费”混合支付,用户兑换无忧,商家资金零风险...
- 一周热门
- 最近发表
- 标签列表
-
- curseforge官网网址 (16)
- 外键约束 oracle (36)
- oracle的row number (32)
- 唯一索引 oracle (34)
- oracle in 表变量 (28)
- oracle导出dmp导出 (28)
- oracle 数据导出导入 (16)
- oracle两个表 (20)
- oracle 数据库 字符集 (20)
- oracle安装补丁 (19)
- matlab归一化 (16)
- matlab化简多项式 (20)
- 多线程的创建方式 (29)
- 多线程 python (30)
- java多线程并发处理 (32)
- 宏程序代码一览表 (35)
- c++需要学多久 (25)
- c语言编程小知识大全 (17)
- css class选择器用法 (25)
- css样式引入 (30)
- html5和css3新特性 (19)
- css教程文字移动 (33)
- php简单源码 (36)
- php个人中心源码 (25)
- 网站管理平台php源码 (19)