百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

常微分方程MATLAB解析解法入门

moboyou 2025-04-26 18:33 24 浏览

有很多的常微分方程解析解求解困难,部分微分方程可能需要使用数值解法。这里根据MATLAB软件,介绍一些常微分方程的解析解求解方法。

齐次微分方程


syms y(x)

ode=diff(y,x)-y==0;

cond=y(0)==1;

ys(x)=dsolve(ode,cond)

syms y(x)

ode=diff(y,x)-y==x;

cond=y(0)==1;

latex(dsolve(ode,cond))%打印latex格式

一阶非线性微分方程

syms y(x)

ode=diff(y,x)^2-y==0;

cond=y(0)==[];

ys(x)=dsolve(ode,cond)%通解

syms y(x)

ode=diff(y,x)-y^2==0;

cond=y(0)==1;

ys(x)=dsolve(ode,cond)

二阶常微分方程

syms y(x)

ode=diff(y,x,2)-y==0;

% cond=y(0)==1;

cond=[];

ys(x)=dsolve(ode,cond)

dy=diff(y,x);

cond=[y(0)==2,dy(0)==0];

ys(x)=dsolve(ode,cond)

syms y(x)

ode=x^2*diff(y,x,2)+x*diff(y,x)-y==0;

% cond=y(0)==1;

cond=[];

ys(x)=dsolve(ode,cond)

dy=diff(y,x);

cond=[y(1)==2,dy(1)==2];

ys(x)=dsolve(ode,cond)

syms y(x)

ode=diff(y,x,2)-(1-y^2)*diff(y,x)+2*y==0;

% cond=y(0)==1;

cond=[];

ys(x)=dsolve(ode,cond,'implicit',true)

%不能求解符号解,添加属性'implicit',true,隐式解析解

%若隐式求解仍不能,则使用数值解法

三阶常微分方程

syms y(x)

ode=diff(y,x,3)-y==0;

% cond=y(0)==1;

cond=[];

ys(x)=dsolve(ode,cond)

dy=diff(y,x);

dyy=diff(y,x,2);

cond=[y(0)==2,dy(0)==0,dyy(0)==0];

ys(x)=dsolve(ode,cond,'IgnoreAnalyticConstraints',true)%不使用简化规则

syms y(x) a b c d e

ode=a*diff(y,x,3)-b*y==0;

% cond=y(0)==1;

cond=[];

ys(x)=dsolve(ode,cond)

dy=diff(y,x);

dyy=diff(y,x,2);

cond=[y(0)==c,dy(0)==d,dyy(0)==e];

ys(x)=dsolve(ode,cond,'IgnoreAnalyticConstraints',true)%不使用简化规则

simplify(ys(0))

解微分方程组

syms x(t) y(t)

ode1=diff(x,t)==x+y;

ode2=diff(y,t)==-x+y;

ode=[ode1,ode2];

cond1=x(0)==0;

cond2=y(0)==1;

cond=[cond1,cond2];

[xs(t) ys(t)]=dsolve(ode,cond)

sol=dsolve(ode,cond);

sol.x

sol.y

这是一篇MATLAB求微分方程解析解的很好的入门教程,注意代码可幅值粘贴使用哦!记得点赞收藏!

相关推荐

黄道十二宫杀手密码51年后被破解,来自两位程序员和数学家合作

杨净边策发自凹非寺量子位报道|公众号QbitAI黄道十二宫杀手(ZodiacKiller)可能是世界上最知名的高智商连环杀手,52年来从未被抓获。他的事迹已被改编成了多部好莱坞电影。△...

深入剖析MediaCodec解码器的基本原理及使用「建议新手收藏」

一,MediaCodec工作原理MediaCodec类Android提供的用于访问低层多媒体编/解码器接口,它是Android低层多媒体架构的一部分,通常与MediaExtractor、MediaMu...

Retrofit WebService 实践

前言作为Android开发,平时和后端聊得最多的除了喝酒就是接口。常用语:Restful和WebService,前者现在聊得多,后者以前聊得多。默认含义分别为:Restful:HTTP协议...

建议收藏!175部4K UHD版本经典高分电影洗版参考目录(2015之前)

本内容来源于@什么值得买APP,观点仅代表作者本人|作者:1L789近两年很多经典高分老电影陆续开始重制成4KUHD版本,虽然我早已将这些电影的BD蓝光版收入,但纠结一番后还是花了不少时间将其全部...

2 个月的面试亲身经历告诉大家,如何进入 BAT 等大厂?

这篇文章主要是从项目来讲的,所以,从以下几个方面展开。怎么介绍项目?怎么介绍项目难点与亮点?你负责的模块?怎么让面试官满意?怎么介绍项目?我在刚刚开始面试的时候,也遇到了这个问题,也是我第一个思考的问...

详解Android官推Kotlin-First的图片加载库

前言Coil是一个非常年轻的图片加载库,在2020年10月22日才发布了1.0.0版本,但却受到了Android官方的推广,在AndroidDevelopersBackst...

webview 渲染机制:硬件加速方式渲染的Android Web

webview渲染是什么?webview渲染是用于展现web页面的控件;webview可以内嵌在移动端,实现前端的混合式开发,大多数混合式开发框架都是基于webview模式进行二次开发的w...

因为我对Handler的了解,居然直接给我加了5K

1Handler是什么?android提供的线程切换工具类。主要的作用是通过handler实现从子线程切换回主线程进行ui刷新操作。1.1为什么Handler能实现线程切换?在创建Handler的...

「经典总结」一个View,从无到有会走的三个流程,你知道吗?

前言一个View,从无到有会走三个流程,也就是老生常谈的measure,layout,draw三流程我们都知道Android视图是由一层一层构成的层级结构,直白点说,就是父View包含子View而子V...

这些垃圾代码是谁写的?哦,原来小丑竟是我自己

程序员是最喜欢自嘲、自黑的群体之一,比如他们常常称自己是“码农”、“程序猿”,再比如他们的工作明明是写代码、修Bug,也有人调侃说:“明明我们是修代码、写Bug!”本文整理了一些程序员“修代码、写...

手把手教你爬取天堂网1920*1080大图片(批量下载)——理论篇

/1前言/平时我们要下载图片,要要一个一个点击下载是不是觉得很麻烦?那有没有更加简便的方法呢?答案是肯定的,这里我们以天堂网为例,批量下载天堂网的图片。/2项目准备工作/首先我们第一步我们要安装...

音视频开发需要你懂得 ffmpeg 开源库的编码原理

引言音视频开发需要你懂得音视频中一些基本概念,针对编解码而言,我们必须提前懂得编解码器的一些特性,码流的结构,码流中一些重要信息如sps,pps,vps,startcode以及基本的工作原理,...

「8年老 Android 开发」最全最新 Android 面试题系列全家桶(带答案)

下面跟大家分享的这些面试题都是互联网大厂真实流出的面试内容,每个问题都附带完整详细的答案,不像网上的那些资料三教九流有的甚至还没答案,这些面试题我也是经过日积月累才整理出来的精品资料。这些面试题主要是...

手把手教你爬取天堂网1920*1080大图片(批量下载)——实战篇

/1前言/上篇文章手把手教你爬取天堂网1920*1080大图片(批量下载)——理论篇我们谈及了天堂网站图片抓取的理论,这篇文章将针对上篇文章的未尽事宜进行完善,完成图片的批量抓取。/2图片网址解...

PHP 8.1.9 更新发布

CLI:修复了内置服务器通过PHP_CLI_server_WORKERS环境变量的潜在溢出。修正了GH-8952(不再可能有意关闭std句柄)。Core:修复了GH-8923的错误(Windows上的...