PHP大模型深度学习库TransformersPHP
moboyou 2025-07-04 22:24 2 浏览
概述
TransformersPHP是一个工具包,PHP开发人员可以轻松地将机器学习魔法添加到他们的项目中。你可能听说过Hugging Face的Python库,它以处理文本而闻名,比如总结长文章,在语言之间进行翻译,甚至是与图像和音频相关的任务。Transformers PHP将这种能力带到了PHP世界。
TransformersPHP被设计为在功能上等同于Python库,同时仍然保持相同的性能和易用性。这个库建立在Hugging Face的Transformers库之上,该库提供了100多种语言的数千个预训练模型。它被设计成一个简单易用的库,供PHP开发人员使用类似于Python库的API。这些模型可用于各种任务,包括文本生成、摘要、翻译等。
TransformersPHP使用ONNX运行时来运行模型,这是开放神经网络交换(ONNX)模型的高性能评分引擎。您可以轻松地将任何PyTorch或TensorFlow模型转换为ONNX,并使用TensorOptimum与TransformersPHP一起使用。
官方文档:
https://codewithkyrian.github.io/transformers-php
使用预训练模型
TransformersPHP背后的核心思想是让你使用已经训练好的模型。“预训练模型”只是从大量文本数据中获得和学习的机器学习模型。它们已经准备好开箱即用,可以执行各种任务。使用TransformersPHP,这些模型直接在PHP应用程序中运行。这意味着您不需要使用外部服务或API来处理数据。一切都发生在本地,在你的服务器上。
什么是ONNX?
ONNX引擎看起来似乎是一个复杂的术语,但它本质上是一个高性能引擎,旨在推断和加速机器学习模型。开放神经网络交换(ONNX)格式是该引擎的核心,是机器学习模型的通用格式。这意味着无论最初使用哪个框架来训练模型-无论是PyTorch,TensorFlow,JAX,甚至是经典的机器学习库,如scikit-learn,LightGBM,XGBoost等-可以转换为ONNX格式。这种格式可以在不同的平台上高效运行,包括PHP应用程序。
灵感
TransformersPHP的开发受到Xenova/transformers项目的启发,Xenova/transformers项目也是一个类似的使用ONNX运行时的JavaScript项目。这种共享的灵感意味着大多数为Xenova/transformers准备的模型也与TransformersPHP兼容。它在机器学习世界和PHP开发之间创建了一个无缝的桥梁,允许您在应用程序中利用强大的模型。
快速浏览
Python
from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
pipe = pipeline('sentiment-analysis')
out = pipe('I love transformers!')
# [{'label': 'POSITIVE', 'score': 0.999806941}]
PHP
use function Codewithkyrian\Transformers\Pipelines\pipeline;
// Allocate a pipeline for sentiment-analysis
$pipe = pipeline('sentiment-analysis');
$out = $pipe('I love transformers!');
// [{'label': 'POSITIVE', 'score': 0.999808732}]
Javascript
import {pipeline} from '@xenova/transformers';
// Allocate a pipeline for sentiment-analysis
let pipe = await pipeline('sentiment-analysis');
let out = await pipe('I love transformers!');
// [{'label': 'POSITIVE', 'score': 0.999817686}]
你可以看到它在不同语言之间是多么的相似,如果你在它们之间切换或学习一种新的语言,这会让你更容易。
特性
- 本地模型执行。直接在PHP项目中部署大量NLP模型,无需依赖外部API即可实现语言理解、文本生成等功能。
- 易于集成。轻松地将高级AI功能嵌入到您的PHP应用程序中,通过文本分类和实体识别等功能对其进行增强。
- 针对性能进行了优化。享受快速处理和高效的资源使用,允许跨任何规模的项目提供可扩展的AI解决方案,而不会牺牲速度或性能。
安装
您可以通过Composer安装库。这是安装库的推荐方法:
composer require codewithkyrian/transformers
TransformersPHP所需的所有共享库都将自动安装。如果由于某种原因失败,您可以使用以下命令手动安装它们:
./vendor/bin/transformers install
说明:共享库是特定于平台的,因此在执行代码的目标平台上运行composerrequire或transformers install命令非常重要。在大多数情况下,这将是您的开发机器或部署应用程序的服务器,但如果您使用Docker容器,请在该容器中运行composer require命令。
就是这样!现在您已经准备好在PHP应用程序中使用TransformersPHP了。
预下载模型
默认情况下,当您第一次使用管道或预训练模型时,TransformersPHP会自动从Hugging Face模型中心检索模型权重(ONNX格式)。为了节省时间并增强用户体验,最好提前下载ONNX型号权重,尤其是对于较大的型号。TransformersPHP包含一个命令行工具来促进这一点:
./vendor/bin/transformers download <model_name_or_path> [<task>] [options]
例如,要下载Xenova/bert-base-uncased模型,您可以运行:
./vendor/bin/transformers download Xenova/bert-base-uncased
基本用法
开始使用TransformersPHP的最快和最直接的方法是通过管道API。如果您熟悉Python的Transformers库,您会发现这种方法非常相似。它是一个用户友好的API,将模型与特定任务的所有必要预处理和后处理步骤捆绑在一起。
创建管道
要创建管道,您需要指定要使用它的任务。例如,如果你想使用一个管道进行情感分析,你可以创建一个这样的管道:
use function Codewithkyrian\Transformers\Pipelines\pipeline;
$classifier = pipeline('sentiment-analysis');
第一次运行时,TransformersPHP将下载并缓存默认的预训练模型,以进行即时情绪分析。这个初始设置可能需要一点时间,但随后的运行会快得多。
使用不同的模型
每个任务都有一个用于推理的默认模型。但是,您可以指定要使用的其他模型:
$classifier = pipeline('sentiment-analysis', 'Xenova/bert-base-multilingual-uncased-sentiment');
您还可以指定是否应使用量化模型(默认值为true):
$classifier = pipeline('sentiment-analysis', quantized: false);
使用流水线
现在你已经有了管道,使用它就像调用一个函数一样简单。只需提供您想要分析的文本即可:
$result = $classifier('I love TransformersPHP!');
你会得到情感分析结果
['label' => 'POSITIVE', 'score' => 0.9995358059835]
你不限于一次一个文本,你也可以传递一个文本数组来获得多个分析:
$results = $classifier([
'I love TransformersPHP!',
'I hate TransformersPHP!',
]);
输出将为您提供每个文本的情感评分
[
['label' => 'POSITIVE', 'score' => 0.99980061678407],
['label' => 'NEGATIVE', 'score' => 0.99842234422764],
]
相关推荐
- 【开源推荐】给大家推荐个基于ChatGPT的PHP开发库 openai-php-api
-
有了这个库大家就可以愉快的使用PHP对接chatGPT的官方接口了,至于对接了官方接口想要做什么就看你自己的啦环境要求PHP7.4或以上composer1.6.5以上支持框架Laravel、Sym...
- PHP使用Phar打包控制台程序
-
1.介绍1.1介绍php脚本有着非常强大的库支持,可以轻松做出特别强大的程序。php不仅仅可以搭建各种各样的网站系统、平台系统,还可以开发基于控制台运行的程序。不过使用php开发的控制台程序在使用...
- PHP实现URL编码、Base64编码、MD5编码的方法
-
1.介绍1.1介绍今天开始福哥要给大家讲解关于字符编码的知识,所谓字符编码就是将一个字符串或者是一个二进制字节数组里面的每一个字符根据一定的规则替换成一个或者多个其他字符的过程。字符编码的意义有很...
- 雷卯针对易百纳海思Hi3521D开发板防雷防静电方案
-
一、应用场景1、医疗电子2、安防监控3、数字标牌4、视频广告5、环境监测二、功能概述1CPU:ARMCortexA7双核@Max.1.3GHz2H.265/H.264&JPEG多码流编...
- 不折腾无人生-安卓盒子安装Linux系统armbian纪实
-
不折腾无人生-安卓盒子安装Linux系统armbian纪实小编的x96max+(晶晨Amlogics905x3)安卓盒子已安装二个系统,原装安卓9.0和tf卡上的CoreELEC9.2.3,可玩性...
- 全网最简单的玩客云刷casaos方法及后续使用心得
-
本内容来源于@什么值得买APP,观点仅代表作者本人|作者:不鸣de前几天在站内看见很多值友分享了玩客云刷casaos,被简洁的操作界面种草,于是我将之前刷了powersee大神网页导航版armbia...
- 最新评测:英特尔旗舰 Alder Lake 处理器击败苹果M1 Max
-
据国外媒体tomshardware报道,英特尔最新的酷睿i9-12900HK处理器刚刚赢得了移动x86与Arm的性能大战,但这是有代价的。这款移动14核AlderLake芯片在多个工作负...
- 创维酷开Max系列电视开启ADB并安装第三方应用教程
-
前言创维酷开系列智能电视采用的是相对封闭的系统,虽然设置中提供了安装未知应用的选项,但由于电视安装位置的限制,往往难以直接使用USB接口安装应用。本文将详细介绍如何通过ADB方式在创维酷开Max系列电...
- 苹果 Mac Studio,再次刷新我们对个人电脑的认知
-
由两块M1Max组成的M1Ultra,成为了M1系列的最后一块拼图,并完成了整个M1SoC宇宙。这就好像《复仇者联盟4:终局之战》对于漫威第一阶段,十几年勤恳的布局,最终达到顶峰...
- 「必买」盘点2021年男人们的败家清单,越“败”越香
-
心里总想买点啥?看看《必买》,全网最有料的场景种草指南。草原割不尽,春风吹又生。在过去的2021年,不断被各种数码产品种草,一直在买买买,剁手不停。大部分产品都经过详细的对比做足了功课,也有部分是一时...
- Opus音频编解码在arm上的移植
-
一、简介现在有个需求,在局域网内实现实时语音,传输层协议使用UDP协议,如果直接使用ALSA进行录制音频流并发送到另一端进行播放,音质会非常差,而且断断续续,原因如下:采样频率:fm=44.1K...
- N ARM MINI空气减震系统臂体安装指南及应用说明
-
距离MOVMAX移动大师NARMMINI发布已经过去一段时间了,不少收到NARMMINI的小伙伴也已经迅速将产品投入到自己的车拍工作中去了。而在实际工作过程中我们也收到了用户的部分疑问和反馈:...
- 搜索引擎中的性能怪兽,Elasticsearch挑战者之Manticore Search
-
ManticoreSearch简介ManticoreSearch是一个使用C++开发的高性能搜索引擎,创建于2017年,其前身是SphinxSearch。ManticoreSe...
- 10个运维拿来就用的 Shell 脚本,用了才知道有多爽
-
1、监控MySQL主从同步状态是否异常脚本#!/bin/bashHOST=localhostUSER=rootPASSWD=123.comIO_SQL_STATUS=$(mysql-h$...
- PHP7.0.0正式版开放下载:速度大提升
-
IT之家讯PHP发布经理AnatolBelski在GitHub发布了PHP7.0.0正式版,该版本在速度提升上面有非常大的进步,比5.6版本提速两倍,已经接近Facebook开发的PHP执行引擎...
- 一周热门
- 最近发表
- 标签列表
-
- curseforge官网网址 (16)
- 外键约束 oracle (36)
- oracle的row number (32)
- 唯一索引 oracle (34)
- oracle in 表变量 (28)
- oracle导出dmp导出 (28)
- oracle两个表 (20)
- oracle 数据库 字符集 (20)
- oracle安装补丁 (19)
- matlab化简多项式 (20)
- 多线程的创建方式 (29)
- 多线程 python (30)
- java多线程并发处理 (32)
- 宏程序代码一览表 (35)
- c++需要学多久 (25)
- c语言编程小知识大全 (17)
- css class选择器用法 (25)
- css样式引入 (30)
- html5和css3新特性 (19)
- css教程文字移动 (33)
- php简单源码 (36)
- php个人中心源码 (25)
- 网站管理平台php源码 (19)
- php小说爬取源码 (23)
- github好玩的php项目 (18)